Антибактеріальні властивості комерційної ефірної олії м’яти проти деяких грампозитивних та грамнегативних бактерій

Автор(и)

  • Галина Ткаченко
  • Наталія Кургалюк
  • Марина Опришко
  • Ірина Антонік
  • Олександр Гиренко
  • Мирослава Маринюк
  • Людмила Буюн
  • Віталій Недосєков

DOI:

https://doi.org/10.37000/abbsl.2023.109.05

Ключові слова:

комерційна ефірна олія м’яти перцевої, антибактеріальна активність, зони інгібування, методика дискової дифузії Кірбі-Бауера.

Анотація

У поточному дослідженні вивчалися антибактеріальні властивості комерційної ефірної олії м’яти перцевої (PEO), наданої польськими виробниками ефірної олії (Naturalne Aromaty sp. z o.o., Клай, Польща), проти деяких грампозитивних і грамнегативних бактерій. Для цього використовувався тест на антимікробну чутливість (дифузійний тест Кірбі–Бауера для вимірювання діаметрів зон пригнічення росту бактерій). У поточному дослідженні грамнегативні штами, такі як Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922™), Escherichia coli (Migula) Castellani and Chalmers (ATCC® 35218™), Pseudomonas aeruginosa (Schroeter) Migula (ATCC®) 27853™) і грампозитивні штами, такі як Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213™), метицилінрезистентний (MRSA), mecA позитивний Staphylococcus aureus (NCTC® 12493), Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 51299™) (стійкий до ванкоміцину; чутливий до тейкопланіну) і Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 29212™). Результати поточного дослідження показали, що резистентними до PEO були штами грамнегативних бактерій, такі як штами E. coli (Migula) Castellani and Chalmers (ATCC® 35218™) і P. aeruginosa (Schroeter) Migula (ATCC® 27853™). Діаметри зон інгібування після нанесення РЕО були подібні до контрольних зразків (96% етанол). Збільшення діаметрів зон інгібування після застосування РЕО становило 60,3% (p < 0,05) для штаму Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922™) порівняно з контрольними зразками (96% етанол). Так само грампозитивні штами, такі як S. aureus subsp. aureus Rosenbach (ATCC® 29213™) і метицилінрезистентний S. aureus (NCTC® 12493) виявилися стійкими до дії PEO. З іншого боку, Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 29212™ ) і Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 51299™ ) були чутливі до PEO. Найбільший діаметр зон інгібування після застосування РЕО спостерігався для штамів E. faecalis. Результати свідчать про те, що комерційна ефірна олія м’яти перцевої, надана польськими виробниками ефірних олій (Naturalne Aromaty sp. z o.o., Клай, Польща), має деякі варті уваги антимікробні властивості. Дослідження in vivo необхідні для розрахунку ефективної дози ЕМ та визначення їх можливих побічних ефектів і токсичності.

Біографії авторів

Галина Ткаченко

Institute of Biology, Pomeranian University in Słupsk, Poland

Наталія Кургалюк

Institute of Biology, Pomeranian University in Słupsk, Poland

Марина Опришко

M.M. Gryshko National Botanic Garden, National Academy of Science of Ukraine, Kyiv, Ukraine

Ірина Антонік

Institute of Climate Smart Agriculture of the National Academy of Agrarian Sciences of Ukraine

Олександр Гиренко

M.M. Gryshko National Botanic Garden, National Academy of Science of Ukraine, Kyiv, Ukraine

Мирослава Маринюк

M.M. Gryshko National Botanic Garden, National Academy of Science of Ukraine, Kyiv, Ukraine

Людмила Буюн

M.M. Gryshko National Botanic Garden, National Academy of Science of Ukraine, Kyiv, Ukraine

Віталій Недосєков

National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

Посилання

Abdel-Wareth, A.A.A., Kehraus, S., & Südekum, K. H. (2019). Peppermint and its respective active component in diets of broiler chickens: growth performance, viability, economics, meat physicochemical properties, and carcass characteristics. Poultry Science, 98(9), 3850–3859. https://doi.org/10.3382/ps/pez099.

Aperce, C. C., Amachawadi, R., Van Bibber-Krueger, C. L., Nagaraja, T. G., Scott, H. M., Vinasco-Torre, J., & Drouillard, J. S. (2016). Effects of Menthol Supplementation in Feedlot Cattle Diets on the Fecal Prevalence of Antimicrobial-Resistant Escherichia coli. PloS One, 11(12), e0168983. https://doi.org/10.1371/journal.pone.0168983.

Badea, M. L., Iconaru, S. L., Groza, A., Chifiriuc, M. C., Beuran, M., & Predoi, D. (2019). Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules (Basel, Switzerland), 24(11), 2169. https://doi.org/10.3390/molecules24112169.

Bauer, A.W., Kirby, W.M., Sherris, J.C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.

Behnam, S., Farzaneh, M., Ahmadzadeh, M., & Tehrani, A. S. (2006). Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens. Communications in Agricultural and Applied Biological Sciences, 71(3 Pt. B), 1321–1326.

Briggs, C. (1993). Peppermint: Medicinal herb and flavoring agent. Canadian Pharmaceutical Journal, 126, 89–92.

Camele, I., Gruľová, D., & Elshafie, H. S. (2021). Chemical Composition and Antimicrobial Properties of Mentha × piperita cv. 'Kristinka' Essential Oil. Plants (Basel, Switzerland), 10(8), 1567. https://doi.org/10.3390/plants10081567.

Castillo-Lopez, E., Rivera-Chacon, R., Ricci, S., Petri, R. M., Reisinger, N., & Zebeli, Q. (2021). Short-term screening of multiple phytogenic compounds for their potential to modulate chewing behavior, ruminal fermentation profile, and pH in cattle fed grain-rich diets. Journal of Dairy Science, 104(4), 4271–4289. https://doi.org/10.3168/jds.2020-19521.

Desam, N. R., Al-Rajab, A. J., Sharma, M., Mary Moses, M., Reddy, G. R., & Albratty, M. (2017). Chemical constituents, in vitro antibacterial and antifungal activity of Mentha piperita L. (Peppermint) essential oils. Journal of King Saud University – Science, 31, 528–533. https://doi.org/10.1016/j.jksus.2017.07.013.

Giannenas, I., Bonos, E., Skoufos, I., Tzora, A., Stylianaki, I., Lazari, D., Tsinas, A., Christaki, E., & Florou-Paneri, P. (2018). Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens. British Poultry Science, 59(5), 545–553.

https://doi.org/10.1080/00071668.2018.1483577.

Herro, E., & Jacob, S. E. (2010). Mentha piperita (peppermint). Dermatitis: Contact, Atopic, Occupational, Drug, 21(6), 327–329.

Hussain, A. I., Anwar, F., Nigam, P. S., Ashraf, M., & Gilani, A. H. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. Journal of the Science of Food and Agriculture, 90(11), 1827–1836. https://doi.org/10.1002/jsfa.4021.

Inouye, S., Takizawa, T., & Yamaguchi, H. (2001). Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. The Journal of Antimicrobial Chemotherapy, 47(5), 565–573. https://doi.org/10.1093/jac/47.5.565.

Işcan, G., Kirimer, N., Kürkcüoğlu, M., Başer, K. H., & Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural and Food Chemistry, 50(14), 3943–3946. https://doi.org/10.1021/jf011476k.

Maffei, M., & Sacco, T. (1987). Chemical and Morphometrical Comparison Between two Peppermint Notomorphs. Planta Medica, 53(2), 214–216. https://doi.org/10.1055/s-2006-962675.

Mahendran, G., & Rahman, L. U. (2020). Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.) – A review. Phytotherapy Research: PTR, 34(9), 2088–2139. https://doi.org/10.1002/ptr.6664.

McKay, D. L., & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research: PTR, 20(8), 619–633. https://doi.org/10.1002/ptr.1936.

Metin, S., Didinen, B. I., Telci, I., & Diler, O. (2021). Essential oil of Mentha suaveolens Ehrh., composition and antibacterial activity against bacterial fish pathogens. Anais da Academia Brasileira de Ciencias, 93(Suppl. 3), e20190478. https://doi.org/10.1590/0001-3765202120190478.

Patra, A. K., Geiger, S., Braun, H. S., & Aschenbach, J. R. (2019). Dietary supplementation of menthol-rich bioactive lipid compounds alters circadian eating behaviour of sheep. BMC Veterinary Research, 15(1), 352. https://doi.org/10.1186/s12917-019-2109-0.

Patra, A. K., Park, T., Braun, H. S., Geiger, S., Pieper, R., Yu, Z., & Aschenbach, J. R. (2019). Dietary Bioactive Lipid Compounds Rich in Menthol Alter Interactions Among Members of Ruminal Microbiota in Sheep. Frontiers in Microbiology, 10, 2038. https://doi.org/10.3389/fmicb.2019.02038.

Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309–318. https://doi.org/10.1179/2047773215Y.0000000030.

Rachitha, P., Krupashree, K., Jayashree, G. V., Gopalan, N., & Khanum, F. (2017). Growth Inhibition and Morphological Alteration of Fusarium sporotrichioides by Mentha piperita Essential Oil. Pharmacognosy Research, 9(1), 74–79. https://doi.org/10.4103/0974-8490.199771.

Ricci, S., Rivera-Chacon, R., Petri, R. M., Sener-Aydemir, A., Sharma, S., Reisinger, N., Zebeli, Q., & Castillo-Lopez, E. (2021). Supplementation With Phytogenic Compounds Modulates Salivation and Salivary Physico-Chemical Composition in Cattle Fed a High-Concentrate Diet. Frontiers in Physiology, 12, 645529. https://doi.org/10.3389/fphys.2021.645529.

Rivera-Chacon, R., Castillo-Lopez, E., Ricci, S., Petri, R. M., Reisinger, N., & Zebeli, Q. (2022). Supplementing a Phytogenic Feed Additive Modulates the Risk of Subacute Rumen Acidosis, Rumen Fermentation and Systemic Inflammation in Cattle Fed Acidogenic Diets. Animals: an open access journal from MDPI, 12(9), 1201. https://doi.org/10.3390/ani12091201.

Salam, M.A., Al-Amin, M.Y., Salam, M.T., Pawar, J.S., Akhter, N., Rabaan, A.A., & Alqumber, M.A.A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel, Switzerland), 11(13), 1946.

https://doi.org/10.3390/healthcare11131946.

Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharopov, F., Antolak, H., Kręgiel, D., Sen, S., Sharifi-Rad, M., Acharya, K., Sharifi-Rad, R., Martorell, M., Sureda, A., Martins, N., & Sharifi-Rad, J. (2018). Plants of Genus Mentha: From Farm to Food Factory. Plants (Basel, Switzerland), 7(3), 70. https://doi.org/10.3390/plants7030070.

Schelz, Z., Molnar, J., & Hohmann, J. (2006). Antimicrobial and antiplasmid activities of essential oils. Fitoterapia, 77(4), 279–285.

https://doi.org/10.1016/j.fitote.2006.03.013.

Schmidt, E., Bail, S., Buchbauer, G., Stoilova, I., Atanasova, T., Stoyanova, A., Krastanov, A., & Jirovetz, L. (2009). Chemical composition, olfactory evaluation and antioxidant effects of essential oil from Mentha x piperita. Natural Product Communications, 4(8), 1107–1112.

Shazdehahmadi, F., Pournajaf, A., Kazemi, S., & Ghasempour, M. (2023). Determining the Antibacterial Effect of Mentha Longifolia Essential Oil on Cariogenic Bacteria and Its Compounds: an in vitro Study. Journal of Dentistry (Shiraz, Iran), 24(1 Suppl.), 146–154. https://doi.org/10.30476/dentjods.2022.92992.1688.

Soković, M. D., Vukojević, J., Marin, P. D., Brkić, D. D., Vajs, V., & van Griensven, L. J. (2009). Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules (Basel, Switzerland), 14(1), 238–249. https://doi.org/10.3390/molecules14010238.

Su, Y. H., & Lin, J. Y. (2022a). Menthone Inhalation Alleviates Local and Systemic Allergic Inflammation in Ovalbumin-Sensitized and Challenged Asthmatic Mice. International Journal of Molecular Sciences, 23(7), 4011. https://doi.org/10.3390/ijms23074011.

Su, Y. H., & Lin, J. Y. (2022b). Menthone supplementation protects from allergic inflammation in the lungs of asthmatic mice. European Journal of Pharmacology, 931, 175222. https://doi.org/10.1016/j.ejphar.2022.175222

Tkachenko, H., Opryshko, M. ., Gyrenko, O. ., Maryniuk, M. ., Buyun, L. ., & Kurhaluk, N. . (2022). Antibacterial Properties of Commercial Lavender Essential Oil against Some Gram-Positive and Gram-Negative Bacteria. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(2). https://agrobiodiversity.uniag.sk/scientificpapers/article/view/455

Tullio, V., Roana, J., Scalas, D., & Mandras, N. (2019). Evaluation of the Antifungal Activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) Essential Oil and Its Synergistic Interaction with Azoles. Molecules (Basel, Switzerland), 24(17), 3148. https://doi.org/10.3390/molecules24173148.

Van Bibber-Krueger, C. L., Miller, K. A., Aperce, C. C., Alvarado-Gilis, C. A., Higgins, J. J., & Drouillard, J. S. (2016). Effects of crystalline menthol on blood metabolites in Holstein steers and in vitro volatile fatty acid and gas production. Journal of Animal Science, 94(3), 1170–1178. https://doi.org/10.2527/jas.2015-8779.

Zaidi, S., & Dahiya, P. (2015). In vitro antimicrobial activity, phytochemical analysis and total phenolic content of essential oil from Mentha spicata and Mentha piperita. International Food Research Journal, 22(6), 2440–2445.

Zar, J.H. (1999). Biostatistical Analysis. 4th ed., Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Zhao, H., Ren, S., Yang, H., Tang, S., Guo, C., Liu, M., Tao, Q., Ming, T., & Xu, H. (2022). Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 154, 113559. https://doi.org/10.1016/j.biopha.2022.113559.

##submission.downloads##

Опубліковано

2023-12-21

Як цитувати

Tkaczenko, H., Kurhaluk, N., Opryshko, M., Antonik, I., Gyrenko, O., Maryniuk, M., Buyun, L., & Nedosekov, V. (2023). Антибактеріальні властивості комерційної ефірної олії м’яти проти деяких грампозитивних та грамнегативних бактерій. Аграрний вісник Причорномор’я, (109), 27-36. https://doi.org/10.37000/abbsl.2023.109.05