THE INFLUENCE OF THE PEGYLATED ANTIBIOTIC ENROFLOXACIN ON BLOOD PROTEIN CONTENT AND LIVER STRUCTURE OF RATS

Authors

  • O. Zelenina
  • V. Vlizlo
  • M. Skrypka
  • D. Ostapiv
  • V. Naida
  • L. Afanasyeva
  • T. Kemal

DOI:

https://doi.org/10.37000/abbsl.2024.110.21

Keywords:

rats, pegylated antibiotic enrofloxacin, PEG-400, enrofloxacin, total protein, protein fractions, liver microstructure.

Abstract

Among medicines, antibacterial drugs have the most distinct side reactions, in particular, the antibiotic enrofloxacin can cause a toxic effect on the body. The synthesis of new compounds of the antibiotic enrofloxacin with improved therapeutic efficacy and minimal side effects is relevant. The aim of the work is to investigate the content of blood serum proteins and the structure of the liver of rats after intramuscular injections of the pegylated antibiotic enrofloxacin and the drugs that were used in its creation - the traditional form of the antibiotic enrofloxacin and the PEG-400 polymer. For four days, daily, once a day the control animals were injected intramuscularly with a saline solution, and the experimental groups were given the antibiotic enrofloxacin in a traditional substance (the first group), the polymer PEG-400 (the second group) and the pegylated antibiotic enrofloxacin (the third one). On the 7th, 14th, and 21st days after the end of drug injections, blood and liver samples were taken from the animals for research. Total protein and its fractions - albumin, alpha-, beta-, and gamma globulins were tested in blood serum. Liver samples were examined histologically. The conducted studies showed that intramuscular injections of the pegylated antibiotic enrofloxacin, PEG-400 polymer and traditional antibiotic enrofloxacin to rats had little effect on the total protein content in the blood serum of rats. The albumin content in the blood of animals treated with the pegylated antibiotic enrofloxacin, compared to control and other experimental animals, remained at a physiologically higher level, which indicates a stable protein synthesizing function of the liver. During the first 7 days after the end of drug treatment, the content of alpha-globulins in the blood serum of experimental group of rats was lower, and highly dispersed globulins (beta- and gamma-globulins) differed little from the control ones. This may indicate a slight effect of drugs on the cells of the reticulohistiocytic system, which are involved in the formation of beta and gamma globulins. Histological studies of liver tissues showed that pegylation of the antibiotic enrofloxacin reduced hepatotoxicity, since changes in the structure of hepatocytes were recorded only in the first 7 days of its use, and morphological disorders of the parenchyma were detected on the 7th and 14th days after the injection of the traditional form of the antibiotic enrofloxacin and 21 days after giving injections. Therefore, pegylation of the antibiotic enrofloxacin leads to a decrease of its toxic effect on the body, in particular, on the liver after intramuscular injections.

Author Biographies

O. Zelenina

Odesa State Agrarian University

V. Vlizlo

Lviv National University of Veterinary Medicine and Biotechnology named after Stepan Gzhytsky

M. Skrypka

Odesa State Agrarian University

D. Ostapiv

Institute of Animal Biology of NAAS

V. Naida

Odesa State Agrarian University

L. Afanasyeva

Odesa State Agrarian University

T. Kemal

Odesa State Agrarian University

References

Atef, M., El-Banna, H., Elzorba, H., & Soliman, A. M. (2020). Pharmacokinetics and tissue residue of enrofloxacin in healthy, Eimeria-infected broiler chickens and those pre-treated with amprolium and toltrazuril. International journal of veterinary science and medicine, 8(1), 31–38. https://doi.org/10.1080/23144599.2020.1765720

Avgoustakis K. (2004). Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Current drug delivery, 1(4), 321–333. https://doi.org/10.2174/1567201043334605.

Barman D.A., Phukan, D.N., Kalita, T.C. Dutta, Mahato, G., P Borah, Rajkhowa, S., & Baishya, B.C. (2023). Efficacy of enrofloxacin over cefalexin in the therapeutic management of canine dermatitis. The Pharma Innovation Journal. 12(1), 2385-2388. https://www.thepharmajournal.com/archives/?year=2023&vol=12&issue=1&ArticleId=18314

Barry, R.L. (2007). PEG as a tool to gain insight into membrane fusion. Eur. Biophys. J., 36(4–5), 315–326. https://doi.org/10.1007/s00249-006-0097-z.

Bird, S., Etminan, M., Brophy, J., Hartzema, A., & Delaney, J. (2013). Risk of acute kidney injury associated with the use of fluoroquinolones. CMAJ: Canadian Medical Association journal, 185(10), E475–E482. https://doi.org/10.1503/cmaj.121730

Camus, M. S., Krimer, P. M., Leroy, B. E., & Almy, F. S. (2010). Evaluation of the positive predictive value of serum protein electrophoresis beta-gamma bridging for hepatic disease in three domestic animal species. Veterinary pathology, 47(6), 1064–1070. https://doi.org/10.1177/0300985810375946

Caruthers, S., Wickline, S., & Lanza, G. (2007). Nanotechnological applications in medicine. Current opinion in biotechnology, 18(1), 26–30. https://doi.org/10.1016/j.copbio.2007.01.006

Cattaneo, L., Lopreiato, V., Piccioli-Cappelli, F., Trevisi, E., & Minuti, A. (2021). Plasma albumin-to-globulin ratio before dry-off as a possible index of inflammatory status and performance in the subsequent lactation in dairy cows. Journal of dairy science, 104(7), 8228–8242. https://doi.org/10.3168/jds.2020-19944

Chekh, B., Ferens, M., Ostapiv, D., Samaryk, V., Varvarenko, S., Vlizlo V. (2017). Characteristics of novel polymer based on pseudo-polyamino acids GluLa-DPG-PEG600:binding of albumin, biocompatibility,biodistribution and potential crossing theblood-brain barrier in rats. The Ukrainian Biochemical Journal, 89(4), 13-21. http://nbuv.gov.ua/UJRN/BioChem_2017_89_4_4

Chen, M., Yang, Y., Ying, Y., Huang, J., Sun, M., Hong, M., Wang, H., Xie, S., & Chen, D. (2023). ABC Transporters and CYP3A4 Mediate Drug Interactions between Enrofloxacin and Salinomycin Leading to Increased Risk of Drug Residues and Resistance. Antibiotics (Basel, Switzerland), 12(2), 403. https://doi.org/10.3390/antibiotics12020403

Clegg, J., Souza, C., & Brame B. (2023). Tolerability of Otic Solutions Containing Different Enrofloxacin Concentrations in Dogs with Healthy Ears. J Am Anim Hosp Assoc, 59(5), 214–218. https://doi.org/10.5326/JAAHA-MS-7363.

Dron, I. A., Vynnytska, S. I., Oleksa, V. V., Khom’iak, S. V., & Ostapiv, D. D. (2018). Syntez i doslidzhennia antybakterialnoi aktyvnosti pehilovanykh enrofloksatsyniv. Visnyk Natsionalnoho universytetu Lvivska politekhnika. 886, 47-51. http://nbuv.gov.ua/UJRN/VNULPX_2018_886_9

Fuchs, K., Rinder, M., Dietrich, R., Banspach, L., Ammer, H., & Korbel, R. (2022). Penetration of Enrofloxacin in Aqueous Humour of Avian Eyes. Veterinary sciences, 10(1), 5. https://doi.org/10.3390/vetsci10010005

Grabowski, L., Gaffke, L., Pierzynowska, K., Cyske, Z., Choszcz, M., Węgrzyn, G., & Węgrzyn, A. (2022). Enrofloxacin-The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections?. International journal of molecular sciences, 23(7), 3648. https://doi.org/10.3390/ijms23073648

Hewitt, M., Cronin, M. T., Enoch, S. J., Madden, J. C., Roberts, D. W., & Dearden, J. C. (2009). In silico prediction of aqueous solubility: the solubility challenge. Journal of chemical information and modeling, 49(11), 2572–2587. https://doi.org/10.1021/ci900286s

Jain, S., Gautam, V., & Naseem, S. (2011). Acute-phase proteins: As diagnostic tool. Journal of pharmacy & bioallied sciences, 3(1), 118–127. https://doi.org/10.4103/0975-7406.76489

Katarey, D., & Verma, S. (2016). Drug-induced liver injury. Clinical medicine (London, England), 16( 6), 104–109. https://doi.org/10.7861/clinmedicine.16-6-s104

Kozak, M., Stasiuk, A., Vlizlo, V., Ostapiv, D., Bodnar, Y., Kuz’mina, N., Figurka, N., Nosova, N., Ostapiv, R., Kotsumbas, I., Varvarenko, S., & Samaryk, V. Polyphosphate Ester-Type Transporters Improve Antimicrobial Properties of Oxytetracycline. Antibiotics 2023, 12 (3), 616. https://doi.org/10.3390/antibiotics12030616.

Kozak, M., Zelenina, O., Ostapiv, D., Skrypka, M., Samaryk, V., &Vlizlo,V. (2023). Blood creatinine content and rat kidney structure after intramuscular injection of pegylated antibiotic enrofloxacin. Biol. Stud.,17(3):47–56. https://doi.org/10.30970/sbi.1703.720.

Kumar, S., Singh, D., Kumari, P., Malik, R. S., Poonam, Parang, K., & Tiwari, R. K. (2020). PEGylation and Cell-Penetrating Peptides: Glimpse into the Past and Prospects in the Future. Current topics in medicinal chemistry, 20(5), 337–348. https://doi.org/10.2174/1568026620666200128142603

Luan, Y., Chen, K., Zhao, J., & Cheng, L. (2022). Comparative Study on Synergistic Toxicity of Enrofloxacin Combined with Three Antibiotics on Proliferation of THLE-2 Cell. Antibiotics. 11(3), 394. https://doi.org/10.3390/antibiotics11030394.

Ma, B., Mei, X., Lei, C., Li, C., Gao, Y., Kong, L., Zhai, X., & Wang, H. (2020). Enrofloxacin Shifts Intestinal Microbiota and Metabolic Profiling and Hinders Recovery from Salmonella enterica subsp. enterica Serovar Typhimurium Infection in Neonatal Chickens. mSphere, 5(5), e00725-20. https://doi.org/10.1128/mSphere.00725-20

Mozar, F. S., & Chowdhury, E. H. (2018). Impact of PEGylated Nanoparticles on Tumor Targeted Drug Delivery. Current pharmaceutical design, 24(28), 3283–3296. https://doi.org/10.2174/1381612824666180730161721

Otsuka, H., Nagasaki, Y., & Kataoka, K. (2003). PEGylated nanoparticles for biological and pharmaceutical applications. Advanced drug delivery reviews, 55(3), 403–419. https://doi.org/10.1016/s0169-409x(02)00226-0.

Piras, C., Soggiu, A., Greco, V., Martino, P. A., Del Chierico, F., Putignani, L., Urbani, A., Nally, J. E., Bonizzi, L., & Roncada, P. (2015). Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog. Journal of proteomics, 127(Pt B), 365–376. https://doi.org/10.1016/j.jprot.2015.05.040

Popp, M., Gerhards, H., & Wollanke, B. (2013). Enrofloxacin concentrations in the vitreous of horses with equine recurrent uveitis (ERU) after repeated intravenous administration. Pferdeheilkunde. 29, 574-580. https://doi.org/10.21836/PEM20130501

PrakashR.G., Adilaxmamma, G., Srividya, T., &Madhava R. (2023). In-vitro synergistic antibacterial activity of Punganur cow urine on enrofloxacin. Int J Vet Sci Anim Husbandry, 8(2), 102-106. https://doi.org/10.22271/veterinary.2023.v8.i2b.501.

Sanchez Armengol, E., Unterweger, A., & Laffleur, F. (2022). PEGylated drug delivery systems in the pharmaceutical field: past, present and future perspective. Drug development and industrial pharmacy, 48(4), 129–139. https://doi.org/10.1080/03639045.2022.2101062

Simonov, M. & Vlizlo, V. (2015). Some blood markers of the functional state of liverin dairy cows with clinical ketosis. Bulgarian Journal of Veterinary Medicine, 18 (1), 74–82. https://doi.org/10.15547/bjvm.814

Smith, A., Pennefather, P., Kaye, S. &Hart C. (2001). Fluoroquinolones. Drugs, 61, 747–761. https://doi.org/10.2165/00003495-200161060-00004

Srinivasu, M., Singh, S., &Ahmad, A. (2022). Pathak Abhishek. Effect of enrofloxacin and ciprofloxacin on oxidative stress in rats. Journal Of Veterinary Pharmacology And Toxicology. 21(1), 80-82. ISSN: 0972-8872.

https://www.indianjournals.com/ijor.aspx?target=ijor:jvpat&volume=21&issue=1&article=018

Szatmári, V., van Dongen, A.M., Restrepo, T.M., den Toom, M.L. & Jongejan, N. (2023). Successful Clindamycin Therapy of an Infected Subcutaneous Permanent Pacing Lead in a Dog after a Failed Course with Potentiated Amoxicillin and Enrofloxacin. Veterinary sciences, 10(2), 93. https://doi.org/10.3390/vetsci10020093.

Tarushi, A., Raptopoulou, C., Psycharis, V., Terzis, A., Psomas, G., & Kessissoglou, D. (2010). Zinc(II) complexes of the second-generation quinolone antibacterial drug enrofloxacin: Structure and DNA or albumin interaction. Bioorganic & medicinal chemistry, 18(7), 2678–2685. https://doi.org/10.1016/j.bmc.2010.02.021

Temmerman, R., Ghanbari, M., Antonissen, G., Schatzmayr, G., Duchateau, L., Haesebrouck, F., Garmyn, A., & Devreese, M. (2022). Dose-dependent impact of enrofloxacin on broiler chicken gut resistome is mitigated by synbiotic application. Frontiers in microbiology, 13, 869538. https://doi.org/10.3389/fmicb.2022.869538

Tothova, C., Nagy, O.& Kovac, G. (2016). Serum proteins and their diagnostic utility in veterinary medicine: a review. Veterinarni Medicina, 61, 475-496. https://doi.org/10.17221/19/2016-VETMED

Trouchon, T. & Lefebvre, S. (2016) A Review of Enrofloxacin for Veterinary Use. Journal of Veterinary Medicine, 6, 40-58. https://doi.org/10.4236/ojvm.2016.62006.

Van Schyndel, S. J., Dubuc, J., Pascottini, O. B., Carrier, J., Kelton, D. F., Duffield, T. F., & LeBlanc, S. J. (2021). The effect of pegbovigrastim on early-lactation disease, production, and reproduction in dairy cows. Journal of dairy science, 104(9), 10100–10110. https://doi.org/10.3168/jds.2021-20266.

Wang, J., Li, S., Han, Y., Guan, J., Chung, S., Wang, C., & Li, D. (2018). Poly(Ethylene Glycol)-Polylactide Micelles for Cancer Therapy. Frontiers in pharmacology, 9, 202. https://doi.org/10.3389/fphar.2018.00202.

Weese, J., Giguère, S., Guardabassi, L., Morley, P., Papich, M., Ricciuto, D., & Sykes, J. (2015). ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. Journal of veterinary internal medicine, 29(2), 487–498. https://doi.org/10.1111/jvim.12562

Westropp, J. L., Sykes, J. E., Irom, S., Daniels, J. B., Smith, A., Keil, D., Settje, T., Wang, Y. & Chew, D.J. (2012). Evaluation of the Efficacy and Safety of High Dose Short Duration Enrofloxacin Treatment Regimen for Uncomplicated Urinary Tract Infections in Dogs. Journal of Veterinary Internal Medicine. 26(3). 506-512. https://doi.org/10.1111/j.1939-1676.2012.00914.x.

Wright, D., Brown, G., Peterson, M., & Rotschafer, J. (2000). Application of fluoroquinolone pharmacodynamics. The Journal of antimicrobial chemotherapy, 46(5), 669–683. https://doi.org/10.1093/jac/46.5.669

Yang, S.-Y., Zhao, F.-K., Pang, H., Chen, L.-Z., Shi, R.-B. & Fang, B.-H. (2022). Pharmaceutical Cocrystals and Salts of Enrofloxacin: Structure and Properties, Journal of Molecular Structure, 133335, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.133335.

Zdvizhkov, Yu. & Bura. M. (2014). Osoblyvosti zastosuvannia polimernykh nosiiv na osnovi polietylenhlikoliu dlia dostavky likiv v orhan-mishen. Visnyk Lvivskoho universytetu. 64, 3-20. http://nbuv.gov.ua/UJRN/VLNU_biol_2014_64_3.

Zelenina, O., Vlizlo, V., Kozak, M., Ostapiv, D., Samaryk, V., Dron, I., Stetsko, T., Skrypka, M., Tomchuk, V., Danchuk, O. & Levchenko, A. Antimicrobial activity of the PEGylated antibiotic enrofloxacin and its functional and structural effect on the liver in rats. Journal of Applied Pharmaceutical Science. 2022. 12(06), 068-075. https://doi.org/10.7324/JAPS.2022.120607. ISSN 2231-3354

Published

2024-03-28

How to Cite

Зеленіна, О., Влізло, В., Скрипка, М., Остапів, Д., Найда, В., Афанасьєва, Л., & Кемаль, Т. (2024). THE INFLUENCE OF THE PEGYLATED ANTIBIOTIC ENROFLOXACIN ON BLOOD PROTEIN CONTENT AND LIVER STRUCTURE OF RATS. Agrarian Bulletin of the Black Sea Littoral, (110), 128-142. https://doi.org/10.37000/abbsl.2024.110.21