ANIMALS MODELS OF EPILEPSY

Authors

  • Yu. Boiko

DOI:

https://doi.org/10.37000/abbsl.2024.110.12

Keywords:

epilepsy, seizures, models, rodents, dogs, immune status.

Abstract

Epilepsies cover a wide range of clinical, behavioral and electrophysiological manifestations and are among the most dynamic diseases in neurology. The classical approach claims that sudden seizures are a characteristic feature of epilepsy, but modern technological equipment has made it possible to establish cyclical signs by directly recording the electrical activity of the brain. The extremely widespread and large economic losses caused by epilepsy, as well as the loss of work capacity and disability of patients, have caused the need for a thorough study of this pathology. Accordingly, a wide range of animal models, i.e., acute and chronic seizure induction protocols, were proposed to study this disease in animals. Epilepsy research has a long history of comparative studies of anatomical structures and physiological parameters in different mammalian species. However, only a relatively limited number of epilepsy models, mostly using rodents, have been disseminated in most experimental studies. In many cases, these animal models were chosen either for convenience or familiarity, but in each individual case it is up to the researcher to choose the final version of the epilepsy model based on technical or experimental rationale. Currently, Danio rerio, a fish of the Cyprinidae family (cyprinids), has been used as an experimental animal. Its brain, which is much simpler in structure and physiology, compared to mammals, allows for significant advantages in experimental research. The work provides an analysis of the current state of the methodology of research of epileptic states on various animal models. Disadvantages and advantages of some of the most common models are considered, and the models are compared.

Author Biography

Yu. Boiko

Odesa State Agrarian University

References

Willner P. Animal models as simulations of depression. Trends Pharmacol Sci. 1991; 12(4):131-6. doi: 10.1016/0165-6147(91)90529-2. PMID: 2063478.

Avanzini G. Animal models relevant to human epilepsies. Ital J Neurol Sci. 1995; 16(1-2):5-8. doi: 10.1007/BF02229068. PMID: 7642352.

Grone, B. P., & Baraban, S. C. (). Animal models in epilepsy research: legacies and new directions. Nature neuroscience. 2015; 18(3):339-343 doi: 10.1038/nn.3934

Buckmaster PS. Laboratory animal models of temporal lobe epilepsy. Comp Med. 2004; 54(5):473-85. PMID: 15575361

Calcagnotto, M.E. & Baraban, S.C. Animal models of epilepsy. in Youmans Textbook of Neurological Surgery (ed. W. HR) 659-655 (Elsevier, 2011)

Harward SC, McNamara JO. Aligning animal models with clinical epilepsy: where to begin? Adv Exp Med Biol. 2014;813:243-51. doi: 10.1007/978-94-017-8914-1_19. PMID: 25012381

Kandratavicius L, Balista PA, Lopes-Aguiar C, Ruggiero RN, Umeoka EH, Garcia-Cairasco N, Bueno-Junior LS, Leite JP. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 2014;10:1693-705. doi: 10.2147/NDT.S50371. PMID: 25228809; PMCID: PMC4164293

Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359-68. doi: 10.1016/j.seizure.2011.01.003. Epub 2011 Feb 2. PMID: 21292505

Pitkänen, A., Galanopoulou, A. S., & Moshé, S. L. (Eds.). Models of seizures and epilepsy. Academic Press, 2017

Purpura, D.P., Penry, J.K., Tower, D., Woodbury, D.M. & Walter, R. Experimental Models of Epilepsy – A Manual for the Laboratory Worker. Raven Press, New York City, 1972

Raol YH, Brooks-Kayal AR. Experimental models of seizures and epilepsies. Prog Mol Biol Transl Sci. 2012;105:57-82. doi: 10.1016/B978-0-12-394596-9.00003-2. PMID: 22137429

Schwartzkroin, P.A. ed. Epilepsy: models, mechanisms, and concepts. Cambridge University Press., Cambridge, 1993

Bradford HF. Glutamate, GABA and epilepsy. Prog Neurobiol. 1995;47(6):477-511. doi: 10.1016/0301-0082(95)00030-5. PMID: 8787032.

Pun RY, Rolle IJ, Lasarge CL, Hosford BE, Rosen JM, Uhl JD, Schmeltzer SN, Faulkner C, Bronson SL, Murphy BL, Richards DA, Holland KD, Danzer SC. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron. 2012;75(6):1022-34. doi: 10.1016/j.neuron.2012.08.002. PMID: 22998871; PMCID: PMC3474536.

Ryan K, Backos DS, Reigan P, Patel M. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J Neurosci. 2012;32(33):11250-8. doi: 10.1523/JNEUROSCI.0907-12.2012. PMID: 22895709; PMCID: PMC3518304.

Jobe PC, Mishra PK, Ludvig N, Dailey JW. Scope and contribution of genetic models to an understanding of the epilepsies. Crit Rev Neurobiol. 1991;6(3):183-220. PMID: 1773452.

Löscher W. Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Methods Find Exp Clin Pharmacol. 1984;6(9):531-47. PMID: 6439966.

Noebels JL. Single-gene models of epilepsy. Adv Neurol. 1999;79:227-38. PMID: 10514817.

Puranam RS, McNamara JO. Seizure disorders in mutant mice: relevance to human epilepsies. Curr Opin Neurobiol. 1999;9(3):281-7. doi: 10.1016/s0959-4388(99)80041-5. PMID: 10395577.

Schwartzkroin PA, Roper SN, Wenzel HJ. Cortical dysplasia and epilepsy: animal models. Adv Exp Med Biol. 2004;548:145-74. doi: 10.1007/978-1-4757-6376-8_12. PMID: 15250593.

Comparative Pathology. British medical journal 1869;2: 371-372

Ferrier, D. Experimental Researches in Cerebral Physiology and Pathology. J Anat Physiol. 1873;8:152-155

Putnam TJ, Merritt HH. Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science. 1937 28;85(2213):525-6. doi: 10.1126/science.85.2213.525. PMID: 17750072.

Gutnick MJ, Prince DA. Effects of projected cortical epileptiform discharges on neuronal activities in ventrobasal thalamus of the cat: ictal discharge. Exp Neurol. 1975;46(2):418-31. doi: 10.1016/0014-4886(75)90146-6. PMID: 1116510.

Dichter M, Spencer WA. Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J Neurophysiol. 1969;32(5):649-62. doi: 10.1152/jn.1969.32.5.649. PMID: 4309021.

Williamson J, Singh T, Kapur J. Neurobiology of organophosphate-induced seizures. Epilepsy Behav. 2019;101(Pt B):106426. doi: 10.1016/j.yebeh.2019.07.027. Epub 2019 Aug 6. PMID: 31399343.

Singh T, Joshi S, Williamson JM, Kapur J. Neocortical injury-induced status epilepticus. Epilepsia. 2020;61(12):2811-2824. doi: 10.1111/epi.16715. Epub 2020 16. PMID: 33063874; PMCID: PMC8764937.

Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev. 2010;62(4):668-700. doi: 10.1124/pr.110.003046. PMID: 21079040; PMCID: PMC3014230.

Pitkänen A, Lukasiuk K, Dudek FE, Staley KJ. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5(10):a022822. doi: 10.1101/cshperspect.a022822. PMID: 26385090; PMCID: PMC4588129.

Kaur D, Pahwa P, Goel RK. Protective Effect of Nerolidol Against Pentylenetetrazol-Induced Kindling, Oxidative Stress and Associated Behavioral Comorbidities in Mice. Neurochem Res. 2016;41(11):2859-2867. doi: 10.1007/s11064-016-2001-2. Epub 2016 Jul 14. PMID: 27418279.

Shimada T, Yoshida T, Yamagata K. Neuritin Mediates Activity-Dependent Axonal Branch Formation in Part via FGF Signaling. J Neurosci. 2016 Apr 20;36(16):4534-48. doi: 10.1523/JNEUROSCI.1715-15.2016. PMID: 27098696; PMCID: PMC6601825.

urski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res. 1983;9(3):315-35. doi: 10.1016/0166-4328(83)90136-5. PMID: 6639740

Furtado Mde A, Braga GK, Oliveira JA, Del Vecchio F, Garcia-Cairasco N. Behavioral, morphologic, and electroencephalographic evaluation of seizures induced by intrahippocampal microinjection of pilocarpine. Epilepsia. 2002;43 Suppl 5:37-9. doi: 10.1046/j.1528-1157.43.s.5.41.x. PMID: 12121293.

Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32(3):281-94. doi: 10.1016/0013-4694(72)90177-0. PMID: 4110397.

Lee M, Choi BY, Suh SW. Unexpected Effects of Acetylcholine Precursors on Pilocarpine Seizure- Induced Neuronal Death. Curr Neuropharmacol. 2018;16(1):51-58. doi: 10.2174/1570159X15666170518150053. PMID: 28521701; PMCID: PMC5771384

Aronica E, Crino PB. Inflammation in epilepsy: clinical observations. Epilepsia. 2011;52 Suppl 3:26-32. doi: 10.1111/j.1528-1167.2011.03033.x. PMID: 21542843.

Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31-40. doi: 10.1038/nrneurol.2010.178. Epub 2010 7. PMID: 21135885; PMCID: PMC3378051.

Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune responses in epilepsy. Glia. 2012;60(8):1258-68. doi: 10.1002/glia.22312. Epub 2012 Feb 13. PMID: 22331574.

Vezzani A, Lang B, Aronica E. Immunity and Inflammation in Epilepsy. Cold Spring Harb Perspect Med. 2015;6(2):a022699. doi: 10.1101/cshperspect.a022699. PMID: 26684336; PMCID: PMC4743070.

Published

2024-03-28

How to Cite

Бойко, Ю. (2024). ANIMALS MODELS OF EPILEPSY. Agrarian Bulletin of the Black Sea Littoral, (110), 71-75. https://doi.org/10.37000/abbsl.2024.110.12