BONE MARROW OF ANIMALS: STRUCTURE AND FUNCTIONS, RESEARCH AND EVALUATION

Authors

  • O. Sukmansky Odesa State Agrarian University
  • S. Ulyzko Odesa State Agrarian University

DOI:

https://doi.org/10.37000/abbsl.2021.100.12

Keywords:

bone marrow, hemopoiesis, myelogram, mammalian, birds, reptiles, amphibian, fishes

Abstract

 The review is devoted to the bone marrow of vertebrates, its structure, functions, research methods and evaluation are described. The bone marrow is the main hemopoietic organ of adult animals. It is located in the central channals and epiphyses of tubular bones, vertebrae and flat bones. The vast majority of its cellular composition is represented by hemopoietic cells. In addition, it contains adipocytes, fibroblasts, osteoblasts and osteoclasts, which form the reticular stroma. The main function of the bone marrow is hemopoiesis. As a primary lymphoid organ, it plays an important role in the development of adaptive immunity. The next function is the production of osteoblasts, osteoclasts and osteocytes that form bone. Another function is the production of adipokines. Bone marrow examination is performed to diagnose hemopoietic neoplasias, as well as in cases of significant changes in the peripheral blood picture (persistent cytopenia). The main study of the bone marrow is the determination of myelogram - the ratio of various nuclear cells. Calculate M: E ratio (myeloid: nuclear erythroid cells), myeloid maturation index (MMI), erythroid maturation index (EMI), etc. Typical myelograms of dog, cat, horse and cattle are presented. In addition to the detailed characterization of the mammalian bone marrow, the review describes the bone marrow (hemopoiesis) of other vertebrates - birds, reptiles, amphibians, and fishes.

References

СM, Catafal LK. Evaluation of bone marrow microenvironment could change how myelodysplastic syndromes are diagnosed and treated Cytometry A. 2018;93(9):916-928. DOI: 10.1002/cyto.a.23506.

Dabrowski Z, Z, I S, D D, Witkowska-Pelc E, Krzysztofowicz E, K. Hematopoiesis in snakes (Ophidia). Folia Histochem Cytobiol. 2002;40(2):219-20.

L, J. Colony-stimulating factor-1-responsive macrophage precursors reside in the amphibian (Xenopus laevis) bone marrow rather than the hematopoietic subcapsular liver. J Innate Immun. 2013;5(6):531-42. DOI: 10.1159/000346928.

Grushko MP. Red bone marrow of the lake frog (Rana ridibunda) and the nimble lizard (Lacerta agilis). Morfologiia. 2010;137(1):31-4. [ Russian]

Harvey JW. Veterinary hematology. A diagnostic guide and color atlas. St Louis, Mo: Elsevier Saunders, 2012.-360+VII p.

Hassnain Waqas SF, A, AC, G, M, S, M, T. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J Leukoc Biol. 2017;102(3):845-855. DOI: 10.1189/jlb.1A0317-082RR.

Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, Lindskog D, Kaplan JL, Ables G, Rodeheffer MS, Rosen CJ. Bone marrow adipocytes. Adipocyte. 2017;6(3):193-204. DOI: 10.1080/21623945.2017.1367881.

Hynes JP, Hughes N, Cunningham P, Kavanagh EC, Eustace SJ. Whole-body MRI of bone marrow: A review. J Magn Reson Imaging. 2019;50(6):1687-1701. DOI: 10.1002/jmri.26759.

Kravtsiv RY, Romanishin VP, Kravtsiv YuR. Veterinary hematology. Lviv: TeRus, 2001.-328 p. [Ukrainian].

.Nagai H, Shin M, Weng W, Nakazawa F, Jakt LM, Alev C, Sheng G. Early hematopoietic and vascular development in the chick. Int J Dev Biol. 2018;62(1-2-3):137-144. DOI: 10.1387/ijdb.170291gs.

Schwartz D, Guzman DS, Beaufrere H, Ammersbach M, Paul-Murphy J, Tully TN Jr, Christopher MM. Morphologic and quantitative evaluation of bone marrow aspirates from Hispaniolan Amazon parrots (Amazona ventralis). Vet Clin Pathol. 2019;48(4):645-651. DOI: 10.1111/vcp.12799.

Simonian GA, Khismutdinov FF. Veterinary hematology. M.: Kolos, 1995.-255 p. [Russian].

Sukmansky OI., Gorokhivsky VN., Kononenko AE. Apelin and adipokine`s system. Innovatsii v stomatoloigii.2016; (4):30-35. [Russian].

Sukmansky OI., Gorokhivsky VN., Shukhtina IN. New adipokines ande metabolic syndrome. Stomatological aspects. Innovatsii v stomatoloigii.2017; (1):15-19. [Russian].

Sukmansky OI., Ulyzko SI. Veterinary hematology. Odesa:BMB, 2009.-168 p.

Sukmansky OI., Ulyzko SI. Bone marrow investigation in animals. Zbirnyk materialiv I haukovo-praktychnoi konferentsii NPP ta molodykh naukovtsiv. Odesa, 2021.-p.94-95 [Ukrainian].

Travlos GS. Normal structure, function, and histology of the bone marrow Toxicol Pathol. 2006;34(5):548-65. DOI: 10.1080/01926230600939856.

Vishnyakov A, D, Timofeev D, Kvan O. Evaluation of bone marrow hemopoiesis and the elemental status of the red bone marrow of chickens under introduction of copper to the organism Environ Sci Pollut Res Int . 2020;27(14):17393-17400. DOI: 10.1007/s11356-020-08161-0.

Weiss DJ., WardropKJ. (Eds). Schalm`s Veterinary Hematology (6th ed.). Singapore: Wile-Blackwell, 2010.-1206+XXIII p.

Yaparla A, L. Isolation and culture of amphibian (Xenopus laevis) sub-capsular liver and bone marrow cells . Methods Mol Biol. 2018;1865:275-281. DOI: 10.1007/978-1-4939-8784-9_20.

Yaparla A, Reeves P, L. Myelopoiesis of the amphibian Xenopus laevis is segregated to the bone marrow, away from their hematopoietic peripheral liver. Front Immunol. 2020;10:3015. DOI: 10.3389/fimmu.2019.03015.

Published

2021-10-24

How to Cite

Сукманський, О., & Улизько, С. (2021). BONE MARROW OF ANIMALS: STRUCTURE AND FUNCTIONS, RESEARCH AND EVALUATION. Agrarian Bulletin of the Black Sea Littoral, (100). https://doi.org/10.37000/abbsl.2021.100.12