INFLUENCE OF THE JET COOL FORCED EVAPORATIVE AIR COOLING SYSTEM ON THE PARAMETERS OF THE MICROCLIMATE OF THE ROOMS, THERMAL STRESS AND PRODUCTIVITY OF SOWS AND PIGLETS
DOI:
https://doi.org/10.37000/abbsl.2025.116.16Keywords:
well-being, evaporation panels, reproductive traits, microclimate, piglet, productivity, growth, sow, thermal comfort, technology, maintenance.Abstract
The study aimed to determine the impact of a pad cooling system on the microclimate in the sow and suckling piglet housing, as well as their physiological state and well-being. The effect of the system on temperature, humidity, air velocity, heat stress, sow milk production, growth, and survival of the offspring was assessed. It was found that using a pad cooling system significantly affected the microclimate, sow physiological state, and suckling piglet production. In the control room, the air temperature at the sow’s respiratory tract level was 28.7 °C, which exceeded the standard values (19–24 °C). In the experimental room with pad cooling, the temperature decreased to 22.4 °C, i.e., by 6.3 °C or 21.9%, which fully met thermal comfort requirements. In the piglet holding area, the temperature decreased by 2.3 °C (7.3%), providing optimal conditions for the growth of the young. The air velocity was also stabilized: at the sow's respiratory tract level, it decreased by 0.08 m/s (22.2%), at the level of the piglets, by 0.09 m/s (34.6%). This allowed avoiding drafts and excessive cooling of the animals, especially sensitive piglets. The air humidity increased from 52.7–53.4% in the control to 65.9–66.1% in the experiment, bringing the conditions closer to the optimal 40–70%. The decrease in the thermal and humidity index (THI) from 77.16 to 69.59 points (-9.8%) had a positive effect on the physiological condition of the sows: skin temperature decreased by 0.3 °C, respiratory rate decreased by 26.3 movements per minute (38.4%), and body weight loss during lactation decreased by 23 kg or 81.6% in natural units (from 28.2 to 5.2 kg). Improved appetite and microclimate increased feed consumption per sow during lactation by 27.73 kg (15.3%). The average daily feed consumption increased by 1.06 kg (16.2%), while the piglets' need for pre-starter feed decreased by 22%. The milk production of sows increased: the average daily milk yield increased by 11.4%, the total for lactation by 10.5%, milk per weaned piglet increased by 10.2%, and milk consumption per 1 kg of piglet growth remained stable. Thanks to the optimal microclimate, the proportion of stillborn piglets decreased by 12.6%, the number of weaned piglets per sow increased by 2.6%, and the survival rate of the litter increased by 1.22%. The weight of one piglet at weaning increased by 0.61 kg (10.2%), and the weight of the entire litter by 10.7 kg (13.1%). The absolute gain of one piglet during lactation increased by 0.7 kg (7.0%), the average daily gain by 7.7–18%, and the complex indices of reproductive qualities of sows (IVYA, SIVIAS, SZFTV) increased by 2–5%.
References
Hilbrands, A. M., Brown-Brandl, T. M., Rohrer, G. A., & Stinn, J. P. (2017). Research room design using artificial heat sources to implement heat stress studies of pigs. Applied Engineering in Agriculture, 33(6), 881–889. https://doi.org/10.13031/aea.12398
Cross, A. J., Keel, B. N., Brown-Brandl, T. M., Rohrer, G. A., & Cassady, J. P. (2018). Genome-wide association of changes in swine feeding behaviour due to heat stress. Genetics Selection Evolution, 50(1), 1–12. https://doi.org/10.1186/s12711-018-0382-1
Reznichenko, V. I., & Lykhach, V. Ya. (2023). The influence of the type of local heating and its energy saving on the productivity and behavior of suckling piglets. Tavriiskyi naukovyi visnyk. Seriia: Silskohospodarski nauky, 134, 305–314. https://doi.org/10.32782/2226-0099.2023.134.39
Lontoc, C. A. A., Marquez, J. B., & Valencia, J. C. (2016). Comparative performance of sows housed with and without evaporative cooling system at temperature humidity index of 73–83. Philippine Journal of Veterinary and Animal Sciences, 42(2), 77–84. http://pjvas.org/index.php/pjvas/article/view/183
Ross, J. W., Hale, B. J., Seibert, J. T., Romoser, M. R., Adur, M. K., & Keating, A. F. (2015). Physiological consequences of heat stress in pigs. Animal Production Science, 55(12), 1381–1390. https://doi.org/10.1071/AN15267
Seelenbinder, K. M., Brown-Brandl, T. M., Eigenberg, R. A., & Stinn, J. P. (2018). Effects of heat stress during porcine reproductive and respiratory syndrome virus infection on metabolic responses in growing pigs. Journal of Animal Science, 96(4), 1375–1387. https://doi.org/10.1093/jas/sky057
Cabezón, F. A., Schinckel, A. P., Alencar, S. A., Faccin, J. E., da Silva, C. A., & Moreira, R. H. R. (2017). Effect of floor cooling on late lactation sows under acute heat stress. Livestock Science, 206, 113–120. https://doi.org/10.1016/j.livsci.2017.10.017
Povod, M. G. (2015). Justification, development, practical implementation of existing and improved technologies for pork production. Doctoral dissertation. Mykolaiv. 369 p.
Voloshchuk, V. M., Pidtereba, O. I., & Gerasymchuk, V. M. (2017). Efficiency of creating a microclimate in the brooder with different methods of air supply and removal. Svynarstvo. Mizhvidomchyi tematychnyi naukovyi zbirnyk Instytutu svynarstva i APV NAAN, (69), 9–18.
Gerasymchuk, V. M. (2018). Assessment and improvement of ventilation systems of pig farms for various purposes. Doctoral dissertation, Institute of Pig Breeding and Agroindustrial Production NAAN. Poltava. 191 p.
Mykhalko, O. G., & Povod, M. G. (2019). Seasonal dependence of the productivity of sows of Danish origin on the design features of the ventilation system of premises during the period of resistance and lactation. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia «Tvarynnytstvo», 1–2(36–37), 15–25. URL: https://repo.snau.edu.ua/handle/123456789/8515
Mykhailov, V. (2024). Cooling systems in pig farming: Effectiveness of pad cooling. Naukovyi visnyk veterynarnoi medytsyny, 42(2), 85–92.
Mykhailov, V. (2024). Evaporative systems in pig farming premises: Experience of Ukraine. Ahroinzheneriia, 15(3), 41–48.
Zhizhka, S. V. (2021). Optimization of technical and technological conditions for keeping Irish-bred pigs in industrial technology. PhD dissertation. Sumy. 189 p.
Povod, M. G., Lykhach, V. Ya., Lykhach, A. V., & Oboronko, D. M. (2022). Practical implementation of existing and improved technologies for the production of pork products. Mykolaiv: Ilion. URL: https://dglibtest.nubip.edu.ua/items/6d7960b0-a875-43cd-92b1-bbf7238e03cb (Request date 21.09.2025)
Deschenko, A., Lykhach, A., Lykhach, V., Lenkov, L., Barkar, Y., & Shpetny, M. (2024). The impact of ventilation system type on the microclimate of boar's pen and their clinical triad parameters. Yuzuncu Yil University Journal of Agricultural Sciences, 34(3), 420–434. https://doi.org/10.29133/yyutbd.1424785
Baumgard, L. H., & Rhoads, R. P. (2013). Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 1, 311–337. https://doi.org/10.1146/annurev-animal-031412-103644
Malmkvist, J., Pedersen, L. J., Kammersgaard, T., & Jørgensen, E. (2012). Influence of thermal environment on sows around farrowing and during the lactation period. Journal of Animal Science, 90(9), 3186–3199. https://doi.org/10.2527/jas.2011-4342
Stinn, J. P., & Xin, H. (2014). Heat and moisture production rates of a modern U.S. swine breeding-gestation-farrowing facility. ASHRAE Transactions, 57(1), 1517–1528. https://doi.org/10.13031/trans.57.10711
Hilbrands, A. M., Brown-Brandl, T. M., Rohrer, G. A., & Stinn, J. P. (2017). Research room design using artificial heat sources to implement heat stress studies of pigs. Applied Engineering in Agriculture, 33(6), 881–889. https://doi.org/10.13031/aea.12398
Mykhaylov, V. V. (n.d.). Ventilation system "Ekzatop" in pig farms – cooling. Digest "Gazeta". Retrieved September 21, 2026, URL: https://vvmikhailov.com/tpost/kcmi6ccfp1-sistema-ventilyats-ekzatop-v-svinarskih (Request date 21.09.2025)
Justino, E., Pandorfi, H., Almeida, G. L. P., Guiselini, C., & Barbosa Filho, J. A. D. (2015). Effect of evaporative cooling and electrolyte balance on lactating sows in tropical summer conditions. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67(2), 455–464. https://doi.org/10.1590/1678-6478
Botto, Ľ., Hanus, A., Chmelíková, G., & Polák, P. (2014). The effect of evaporative cooling on climatic parameters in a stable for sows. Research in Agricultural Engineering, 60(S1), S85–S91. https://doi.org/10.17221/40/2013-RAE
Perin, J., Pandorfi, H., Almeida, G. L. P., Guiselini, C., & Barbosa Filho, J. A. D. (2016). Evaporative snout cooling system on the performance of lactating sows and their litters in a subtropical region. Ciência Rural, 46(2), 342–347. https://doi.org/10.1590/0103-8478cr20141693
Deschenko, O., & Lykhach, A. (2024). Behavioural patterns of boars by breed depending on age, season, and type of ventilation. Animal Science and Food Technology, 15(2), 72–92. https://doi.org/10.31548/animal.2.2024.72
Stender, D. R., Harmon, J. D., Weiss, J. D., & Cox, D. (2003). Comparison of different styles of swine finishing facilities within a uniform production system. Applied Engineering in Agriculture, 19(1), 79–82. https://doi.org/10.13031/2013.12734
Barbari, M., Conti, L., Monti, M., & Rossi, G. (2007). Effects of different ventilation systems on pig welfare. Journal of Agricultural Engineering Research, 86(1), 85–93. https://doi.org/10.1016/j.jaer.2007.02.005
Justino, E., Pandorfi, H., Almeida, G. L. P., Barbosa Filho, J. A. D., & Guiselini, C. (2014). The impact of evaporative cooling on the thermoregulation and sensible heat loss of sows during farrowing. Engenharia Agrícola, 34(6), 1050–1061. https://doi.org/10.1590/S0100-69162014000600003
Lucy, M. C., & Safranski, T. J. (2017). Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring. Molecular Reproduction and Development, 84(9), 1–11. https://doi.org/10.1002/mrd.22844
Morales, O. E. S., de Oliveira, R. F. M., Donzele, J. L., Saraiva, A., & Oliveira, W. P. (2013). Effect of different systems for the control of environmental temperature on the performance of sows and their litters. Acta Scientiae Veterinariae, 41(1), 1–7. https://www.redalyc.org/pdf/2890/289031817016.pdf
Noblet, J., Fortun-Lamothe, L., & Dourmad, J. Y. (2003). Estimation de la valeur énergétique des aliments pour le porc. Productions Animales, 3(4), 197–210. http://agris.fao.org/agris-search/search.do?recordID=LV2016020035
Williams, A. M., Safranski, T. J., Spiers, D. E., Eichen, P. A., Coate, E. A., & Lucy, M. C. (2013). Effects of a controlled heat stress during late gestation, lactation, and after weaning on the thermoregulation, metabolism, and reproduction of primiparous sows. Journal of Animal Science, 91(6), 2700–2714. https://doi.org/10.2527/jas.2012-6055
Bragança, M. M., Mullan, B. P., & Pluske, J. R. (1998). Does feed restriction mimic the effects of increased ambient temperature in lactating sows? Journal of Animal Science, 76(8), 2017–2024. https://doi.org/10.2527/1998.7682017x
Povod, M., Bondarska, O., Lykhach, V., Zhyshka, S., & Nechmilov, V. (2021). Technology for the production of pork products: A textbook. Kyiv: Scientific and Methodological Center of the VFPO. 360 p.
Pandorfi, H., Almeida, G. L. P., Guiselini, C., & Almeida, G. A. (2008). Conforto térmico para matrizes suínas em fase de gestação, alojadas em baias individuais e coletivas. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(3), 326–332. https://doi.org/10.1590/S1415-43662008000300015
Ribeiro, B. P. V. B., Bernardi, M. L., Wentz, I., Bortolozzo, F. P., & Barcellos, D. E. S. N. (2018). Heat negatively affects lactating swine: A meta-analysis. Journal of Thermal Biology, 74, 325–330. https://doi.org/10.1016/j.jtherbio.2018.04.015
Romanini, C. E. B., Pandorfi, H., Almeida, G. L. P., Guiselini, C., & Almeida, G. A. (2008). Physiological and productive responses of environmental control on housed sows. Scientia Agricola, 65(4), 335–339. https://doi.org/10.1590/S0103-90162008000400002
Kiefer, C., Moura, M. S., Silva, C. M., & Lima, A. L. (2012). Evaporative cooling for lactating sows under high ambient temperature. Revista Brasileira de Zootecnia, 41(5), 1180–1185. https://doi.org/10.1590/S1516-35982012000500015
Mendes, A. S., Rech, C. L. S., Gava, D., Silveira, P. R. S., Machado, G. S., & Silva, C. A. (2020). Evaporative cooling system for gestating and lactating sows: A systematic review. Ciência Rural, 50(11), e20190758. https://doi.org/10.1590/0103-8478cr20190758
Renaudeau, D., Collin, A., Yahav, S., Basilio, V. de, Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707–728. https://doi.org/10.1017/S1751731111002448
Regional meteorological observation data. URL: https://meteopost.com/weather/climate/ (Request date 21.09.2025)
Ladyka, V. I., Khmelnychyy, L. M., & Povod, M. G. (2023). Technology of production and processing of livestock products: A textbook for graduate students. Odesa: Oldi+. 244 p.
Thom, E. C. (1959). The discomfort index. Weatherwise, 12(2), 57–60. https://doi.org/10.1080/00431672.1959.9926960
Ferreira, A.S., Costa, P.M.A., & Pereira, J.A.A. (1988). Estimativas de Produção de Leite de Porca. Revista da Sociedade Brasileira de Zootecnia, 17, 203–211.
Tsereniuk, A. N., Khvatov, A. I., & Stryzhak, T. A. (2010). Evaluation of the effectiveness of indices of maternal productivity of pigs. Zbirnyk naukovykh prats Vinnytskoho natsionalnoho ahrarnoho universytetu. Seriia: Tvorchist, 3(42), 73–77. http://socrates.vsau.edu.ua/repository/getfile.php/6689.pdf
Radnóczi, L., Novozánszky, G., Baltay, M., Csóka, L., Eicher, J. & Fekete, B. (2017). Ertés teljesítményvizsgálati kódex. Budapest, 39. URL: http://www.mfse.eu/modul/_files/k_dex_8_2017.pdf
Kramarenko, S. S., Lugovyi, S. I., Lykhach, A. V., & Kramarenko, O. S. (2019). Analysis of biometric data in animal breeding and selection: A textbook. Mykolaiv: MNAU. 211 p.
Muns, R., Malmkvist, J., Larsen, M. L. V., Sørensen, D., Pedersen, L. J., & Nielsen, M. N. (2016). High environmental temperature around farrowing induced heat stress in crated sows. Journal of Animal Science, 94(1), 377–384. https://doi.org/10.2527/jas.2015-9623
Ross, J. W., Hale, B. J., Seibert, J. T., Romoser, M. R., Adur, M. K., & Keating, A. F. (2017). Physiological mechanisms through which heat stress compromises reproduction in pigs. Molecular Reproduction and Development, 84(9), 934–945. https://doi.org/10.1002/mrd.22859
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.