INFLUENCE OF THE JET COOL FORCED EVAPORATIVE AIR COOLING SYSTEM ON THE PARAMETERS OF THE MICROCLIMATE OF THE ROOMS, THERMAL STRESS AND PRODUCTIVITY OF SOWS AND PIGLETS

Authors

  • Andriy Sadovy
  • Vadym Lykhach
  • Svitlana Usenko
  • Oleksandr Myhalko
  • Lyudmila Zlamanyuk
  • Lyudmila Chepil

DOI:

https://doi.org/10.37000/abbsl.2025.116.16

Keywords:

well-being, evaporation panels, reproductive traits, microclimate, piglet, productivity, growth, sow, thermal comfort, technology, maintenance.

Abstract

The study aimed to determine the impact of a pad cooling system on the microclimate in the sow and suckling piglet housing, as well as their physiological state and well-being. The effect of the system on temperature, humidity, air velocity, heat stress, sow milk production, growth, and survival of the offspring was assessed. It was found that using a pad cooling system significantly affected the microclimate, sow physiological state, and suckling piglet production. In the control room, the air temperature at the sow’s respiratory tract level was 28.7 °C, which exceeded the standard values (19–24 °C). In the experimental room with pad cooling, the temperature decreased to 22.4 °C, i.e., by 6.3 °C or 21.9%, which fully met thermal comfort requirements. In the piglet holding area, the temperature decreased by 2.3 °C (7.3%), providing optimal conditions for the growth of the young. The air velocity was also stabilized: at the sow's respiratory tract level, it decreased by 0.08 m/s (22.2%), at the level of the piglets, by 0.09 m/s (34.6%). This allowed avoiding drafts and excessive cooling of the animals, especially sensitive piglets. The air humidity increased from 52.7–53.4% in the control to 65.9–66.1% in the experiment, bringing the conditions closer to the optimal 40–70%. The decrease in the thermal and humidity index (THI) from 77.16 to 69.59 points (-9.8%) had a positive effect on the physiological condition of the sows: skin temperature decreased by 0.3 °C, respiratory rate decreased by 26.3 movements per minute (38.4%), and body weight loss during lactation decreased by 23 kg or 81.6% in natural units (from 28.2 to 5.2 kg). Improved appetite and microclimate increased feed consumption per sow during lactation by 27.73 kg (15.3%). The average daily feed consumption increased by 1.06 kg (16.2%), while the piglets' need for pre-starter feed decreased by 22%. The milk production of sows increased: the average daily milk yield increased by 11.4%, the total for lactation by 10.5%, milk per weaned piglet increased by 10.2%, and milk consumption per 1 kg of piglet growth remained stable. Thanks to the optimal microclimate, the proportion of stillborn piglets decreased by 12.6%, the number of weaned piglets per sow increased by 2.6%, and the survival rate of the litter increased by 1.22%. The weight of one piglet at weaning increased by 0.61 kg (10.2%), and the weight of the entire litter by 10.7 kg (13.1%). The absolute gain of one piglet during lactation increased by 0.7 kg (7.0%), the average daily gain by 7.7–18%, and the complex indices of reproductive qualities of sows (IVYA, SIVIAS, SZFTV) increased by 2–5%.

Author Biographies

Andriy Sadovy

Candidate for the degree of Doctor of Philosophy, 3rd year of study,
Department of Animal Husbandry Technologies,
National University of Life Resources and Environmental Management of Ukraine
ORCID ID: 0009-0001-2608-4033
е-mail: a.sadovyi@nubip.edu.ua

Vadym Lykhach

Doctor of Agricultural Sciences, Professor,
Head of the Department of Animal Husbandry Technologies
National University of Life Resources and Environmental
Management of Ukraine
ORCID ID: 0000-0002-9150-6730
е-mail: vylykhach80@nubip.edu.ua

Svitlana Usenko

Doctor of Agricultural Sciences, Senior Researcher.
Department of Animal Productivity Biology
Poltava State Agrarian University
ORCID ID: 0000-0001-9263-5625
е-mail: svetlana.usenko@pdau.edu.ua

Oleksandr Myhalko

Doctor of Philosophy, Associate Professor, Department
of Feed Technology and Animal Feeding,
Sumy National Agrarian University, Sumy, Ukraine
ORCID ID: 0000-0002-0736-2296
е-mail: snau.cz@ukr.net

Lyudmila Zlamanyuk

Candidate of Agricultural Sciences, Associate Professor
of the Department of Animal Husbandry Technologies,
National University of Life Resources and Environmental Management
of Ukraine, Kyiv, Ukraine
ORCID ID: 0000-0003-3323-4658
е-mail: zlamanuk@nubip.edu.ua

Lyudmila Chepil

Candidate of Agricultural Sciences,
Associate Professor of the Department of Animal Husbandry Technologies,
National University of Life Resources and Environmental Management
of Ukraine, Kyiv, Ukraine
ORCID ID: 0000-0002-2889-5446
е-mail: chepil2017@ukr.net

References

Hilbrands, A. M., Brown-Brandl, T. M., Rohrer, G. A., & Stinn, J. P. (2017). Research room design using artificial heat sources to implement heat stress studies of pigs. Applied Engineering in Agriculture, 33(6), 881–889. https://doi.org/10.13031/aea.12398

Cross, A. J., Keel, B. N., Brown-Brandl, T. M., Rohrer, G. A., & Cassady, J. P. (2018). Genome-wide association of changes in swine feeding behaviour due to heat stress. Genetics Selection Evolution, 50(1), 1–12. https://doi.org/10.1186/s12711-018-0382-1

Reznichenko, V. I., & Lykhach, V. Ya. (2023). The influence of the type of local heating and its energy saving on the productivity and behavior of suckling piglets. Tavriiskyi naukovyi visnyk. Seriia: Silskohospodarski nauky, 134, 305–314. https://doi.org/10.32782/2226-0099.2023.134.39

Lontoc, C. A. A., Marquez, J. B., & Valencia, J. C. (2016). Comparative performance of sows housed with and without evaporative cooling system at temperature humidity index of 73–83. Philippine Journal of Veterinary and Animal Sciences, 42(2), 77–84. http://pjvas.org/index.php/pjvas/article/view/183

Ross, J. W., Hale, B. J., Seibert, J. T., Romoser, M. R., Adur, M. K., & Keating, A. F. (2015). Physiological consequences of heat stress in pigs. Animal Production Science, 55(12), 1381–1390. https://doi.org/10.1071/AN15267

Seelenbinder, K. M., Brown-Brandl, T. M., Eigenberg, R. A., & Stinn, J. P. (2018). Effects of heat stress during porcine reproductive and respiratory syndrome virus infection on metabolic responses in growing pigs. Journal of Animal Science, 96(4), 1375–1387. https://doi.org/10.1093/jas/sky057

Cabezón, F. A., Schinckel, A. P., Alencar, S. A., Faccin, J. E., da Silva, C. A., & Moreira, R. H. R. (2017). Effect of floor cooling on late lactation sows under acute heat stress. Livestock Science, 206, 113–120. https://doi.org/10.1016/j.livsci.2017.10.017

Povod, M. G. (2015). Justification, development, practical implementation of existing and improved technologies for pork production. Doctoral dissertation. Mykolaiv. 369 p.

Voloshchuk, V. M., Pidtereba, O. I., & Gerasymchuk, V. M. (2017). Efficiency of creating a microclimate in the brooder with different methods of air supply and removal. Svynarstvo. Mizhvidomchyi tematychnyi naukovyi zbirnyk Instytutu svynarstva i APV NAAN, (69), 9–18.

Gerasymchuk, V. M. (2018). Assessment and improvement of ventilation systems of pig farms for various purposes. Doctoral dissertation, Institute of Pig Breeding and Agroindustrial Production NAAN. Poltava. 191 p.

Mykhalko, O. G., & Povod, M. G. (2019). Seasonal dependence of the productivity of sows of Danish origin on the design features of the ventilation system of premises during the period of resistance and lactation. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia «Tvarynnytstvo», 1–2(36–37), 15–25. URL: https://repo.snau.edu.ua/handle/123456789/8515

Mykhailov, V. (2024). Cooling systems in pig farming: Effectiveness of pad cooling. Naukovyi visnyk veterynarnoi medytsyny, 42(2), 85–92.

Mykhailov, V. (2024). Evaporative systems in pig farming premises: Experience of Ukraine. Ahroinzheneriia, 15(3), 41–48.

Zhizhka, S. V. (2021). Optimization of technical and technological conditions for keeping Irish-bred pigs in industrial technology. PhD dissertation. Sumy. 189 p.

Povod, M. G., Lykhach, V. Ya., Lykhach, A. V., & Oboronko, D. M. (2022). Practical implementation of existing and improved technologies for the production of pork products. Mykolaiv: Ilion. URL: https://dglibtest.nubip.edu.ua/items/6d7960b0-a875-43cd-92b1-bbf7238e03cb (Request date 21.09.2025)

Deschenko, A., Lykhach, A., Lykhach, V., Lenkov, L., Barkar, Y., & Shpetny, M. (2024). The impact of ventilation system type on the microclimate of boar's pen and their clinical triad parameters. Yuzuncu Yil University Journal of Agricultural Sciences, 34(3), 420–434. https://doi.org/10.29133/yyutbd.1424785

Baumgard, L. H., & Rhoads, R. P. (2013). Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 1, 311–337. https://doi.org/10.1146/annurev-animal-031412-103644

Malmkvist, J., Pedersen, L. J., Kammersgaard, T., & Jørgensen, E. (2012). Influence of thermal environment on sows around farrowing and during the lactation period. Journal of Animal Science, 90(9), 3186–3199. https://doi.org/10.2527/jas.2011-4342

Stinn, J. P., & Xin, H. (2014). Heat and moisture production rates of a modern U.S. swine breeding-gestation-farrowing facility. ASHRAE Transactions, 57(1), 1517–1528. https://doi.org/10.13031/trans.57.10711

Hilbrands, A. M., Brown-Brandl, T. M., Rohrer, G. A., & Stinn, J. P. (2017). Research room design using artificial heat sources to implement heat stress studies of pigs. Applied Engineering in Agriculture, 33(6), 881–889. https://doi.org/10.13031/aea.12398

Mykhaylov, V. V. (n.d.). Ventilation system "Ekzatop" in pig farms – cooling. Digest "Gazeta". Retrieved September 21, 2026, URL: https://vvmikhailov.com/tpost/kcmi6ccfp1-sistema-ventilyats-ekzatop-v-svinarskih (Request date 21.09.2025)

Justino, E., Pandorfi, H., Almeida, G. L. P., Guiselini, C., & Barbosa Filho, J. A. D. (2015). Effect of evaporative cooling and electrolyte balance on lactating sows in tropical summer conditions. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67(2), 455–464. https://doi.org/10.1590/1678-6478

Botto, Ľ., Hanus, A., Chmelíková, G., & Polák, P. (2014). The effect of evaporative cooling on climatic parameters in a stable for sows. Research in Agricultural Engineering, 60(S1), S85–S91. https://doi.org/10.17221/40/2013-RAE

Perin, J., Pandorfi, H., Almeida, G. L. P., Guiselini, C., & Barbosa Filho, J. A. D. (2016). Evaporative snout cooling system on the performance of lactating sows and their litters in a subtropical region. Ciência Rural, 46(2), 342–347. https://doi.org/10.1590/0103-8478cr20141693

Deschenko, O., & Lykhach, A. (2024). Behavioural patterns of boars by breed depending on age, season, and type of ventilation. Animal Science and Food Technology, 15(2), 72–92. https://doi.org/10.31548/animal.2.2024.72

Stender, D. R., Harmon, J. D., Weiss, J. D., & Cox, D. (2003). Comparison of different styles of swine finishing facilities within a uniform production system. Applied Engineering in Agriculture, 19(1), 79–82. https://doi.org/10.13031/2013.12734

Barbari, M., Conti, L., Monti, M., & Rossi, G. (2007). Effects of different ventilation systems on pig welfare. Journal of Agricultural Engineering Research, 86(1), 85–93. https://doi.org/10.1016/j.jaer.2007.02.005

Justino, E., Pandorfi, H., Almeida, G. L. P., Barbosa Filho, J. A. D., & Guiselini, C. (2014). The impact of evaporative cooling on the thermoregulation and sensible heat loss of sows during farrowing. Engenharia Agrícola, 34(6), 1050–1061. https://doi.org/10.1590/S0100-69162014000600003

Lucy, M. C., & Safranski, T. J. (2017). Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring. Molecular Reproduction and Development, 84(9), 1–11. https://doi.org/10.1002/mrd.22844

Morales, O. E. S., de Oliveira, R. F. M., Donzele, J. L., Saraiva, A., & Oliveira, W. P. (2013). Effect of different systems for the control of environmental temperature on the performance of sows and their litters. Acta Scientiae Veterinariae, 41(1), 1–7. https://www.redalyc.org/pdf/2890/289031817016.pdf

Noblet, J., Fortun-Lamothe, L., & Dourmad, J. Y. (2003). Estimation de la valeur énergétique des aliments pour le porc. Productions Animales, 3(4), 197–210. http://agris.fao.org/agris-search/search.do?recordID=LV2016020035

Williams, A. M., Safranski, T. J., Spiers, D. E., Eichen, P. A., Coate, E. A., & Lucy, M. C. (2013). Effects of a controlled heat stress during late gestation, lactation, and after weaning on the thermoregulation, metabolism, and reproduction of primiparous sows. Journal of Animal Science, 91(6), 2700–2714. https://doi.org/10.2527/jas.2012-6055

Bragança, M. M., Mullan, B. P., & Pluske, J. R. (1998). Does feed restriction mimic the effects of increased ambient temperature in lactating sows? Journal of Animal Science, 76(8), 2017–2024. https://doi.org/10.2527/1998.7682017x

Povod, M., Bondarska, O., Lykhach, V., Zhyshka, S., & Nechmilov, V. (2021). Technology for the production of pork products: A textbook. Kyiv: Scientific and Methodological Center of the VFPO. 360 p.

Pandorfi, H., Almeida, G. L. P., Guiselini, C., & Almeida, G. A. (2008). Conforto térmico para matrizes suínas em fase de gestação, alojadas em baias individuais e coletivas. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(3), 326–332. https://doi.org/10.1590/S1415-43662008000300015

Ribeiro, B. P. V. B., Bernardi, M. L., Wentz, I., Bortolozzo, F. P., & Barcellos, D. E. S. N. (2018). Heat negatively affects lactating swine: A meta-analysis. Journal of Thermal Biology, 74, 325–330. https://doi.org/10.1016/j.jtherbio.2018.04.015

Romanini, C. E. B., Pandorfi, H., Almeida, G. L. P., Guiselini, C., & Almeida, G. A. (2008). Physiological and productive responses of environmental control on housed sows. Scientia Agricola, 65(4), 335–339. https://doi.org/10.1590/S0103-90162008000400002

Kiefer, C., Moura, M. S., Silva, C. M., & Lima, A. L. (2012). Evaporative cooling for lactating sows under high ambient temperature. Revista Brasileira de Zootecnia, 41(5), 1180–1185. https://doi.org/10.1590/S1516-35982012000500015

Mendes, A. S., Rech, C. L. S., Gava, D., Silveira, P. R. S., Machado, G. S., & Silva, C. A. (2020). Evaporative cooling system for gestating and lactating sows: A systematic review. Ciência Rural, 50(11), e20190758. https://doi.org/10.1590/0103-8478cr20190758

Renaudeau, D., Collin, A., Yahav, S., Basilio, V. de, Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707–728. https://doi.org/10.1017/S1751731111002448

Regional meteorological observation data. URL: https://meteopost.com/weather/climate/ (Request date 21.09.2025)

Ladyka, V. I., Khmelnychyy, L. M., & Povod, M. G. (2023). Technology of production and processing of livestock products: A textbook for graduate students. Odesa: Oldi+. 244 p.

Thom, E. C. (1959). The discomfort index. Weatherwise, 12(2), 57–60. https://doi.org/10.1080/00431672.1959.9926960

Ferreira, A.S., Costa, P.M.A., & Pereira, J.A.A. (1988). Estimativas de Produção de Leite de Porca. Revista da Sociedade Brasileira de Zootecnia, 17, 203–211.

Tsereniuk, A. N., Khvatov, A. I., & Stryzhak, T. A. (2010). Evaluation of the effectiveness of indices of maternal productivity of pigs. Zbirnyk naukovykh prats Vinnytskoho natsionalnoho ahrarnoho universytetu. Seriia: Tvorchist, 3(42), 73–77. http://socrates.vsau.edu.ua/repository/getfile.php/6689.pdf

Radnóczi, L., Novozánszky, G., Baltay, M., Csóka, L., Eicher, J. & Fekete, B. (2017). Ertés teljesítményvizsgálati kódex. Budapest, 39. URL: http://www.mfse.eu/modul/_files/k_dex_8_2017.pdf

Kramarenko, S. S., Lugovyi, S. I., Lykhach, A. V., & Kramarenko, O. S. (2019). Analysis of biometric data in animal breeding and selection: A textbook. Mykolaiv: MNAU. 211 p.

Muns, R., Malmkvist, J., Larsen, M. L. V., Sørensen, D., Pedersen, L. J., & Nielsen, M. N. (2016). High environmental temperature around farrowing induced heat stress in crated sows. Journal of Animal Science, 94(1), 377–384. https://doi.org/10.2527/jas.2015-9623

Ross, J. W., Hale, B. J., Seibert, J. T., Romoser, M. R., Adur, M. K., & Keating, A. F. (2017). Physiological mechanisms through which heat stress compromises reproduction in pigs. Molecular Reproduction and Development, 84(9), 934–945. https://doi.org/10.1002/mrd.22859

Published

2025-09-30

How to Cite

Садовий, А., Лихач, В., Усенко, С., Михалко, О., Зламанюк, Л., & Чепіль, Л. (2025). INFLUENCE OF THE JET COOL FORCED EVAPORATIVE AIR COOLING SYSTEM ON THE PARAMETERS OF THE MICROCLIMATE OF THE ROOMS, THERMAL STRESS AND PRODUCTIVITY OF SOWS AND PIGLETS . Agrarian Bulletin of the Black Sea Littoral, (116), 217-247. https://doi.org/10.37000/abbsl.2025.116.16