INFLUENCE OF SALVIA GENUS MEDICINAL PLANTS ON THE MORPHOFUNCTIONAL STATE OF RAT'S LIVER FED WITH EXCESSIVE FAT DIET
DOI:
https://doi.org/10.37000/abbsl.2023.109.16Keywords:
herbal medicine; protein metabolism; lipid metabolism; absolute and relative organs' mass; obesity.Abstract
Herbal preparations used in treatment protocols for metabolic disorders are highly effective and less toxic than chemically synthesized ones. Plants of the genus Salvia are widely known and used in the treatment and prevention of many human and animal diseases. We studied the influence of common sage (S. officinalis) and clary sage (S. sclarea) on the liver morphofunctional state and biochemical blood parameters. Three groups of white laboratory rats (n=7) were formed for the experiment. During the 30-day experiment, all animals received a high-fat diet, and the experimental ones additionally received 5% of crushed dry shoots of two sage types. The animals were weighed, the average daily body weight gain was calculated, at the end of the experiment, biochemical blood parameters were determined, and macro- and microscopic changes in the liver were assessed. It was found that a excessive fat diet caused the development of granular and fatty liver degeneration, and the supplementation with medicinal plants did not improve the organ histostructure. The introduction of Salvia officinalis into a high-fat diet caused an increase in the average daily body weight gain, absolute liver weight, an increase in the total protein in the blood plasma and a decrease in the urea level, total bilirubin, and triacylglycerol. Consumption of clary sage by animals contributed to a decrease in body weight gain and also caused significant changes in lipid metabolism.
References
Agadzhanyan, A. A. (2015). Hypoglycemic and hypolipidemic activity of the leaf extract of Salvia officinalis L. Eurasian Union of Scientists. Series: medical, biological and chemical sciences, 12(21), 5–8.
Cerri, G. C., Lima, L. C. F., Lelis, D. D., Barcelos, L. D., Feltenberger, J. D., Mussi, S. V., Monteiro, R. S., dos Santos, R. A. S., Ferreira, L. A. M., & Santos, S. H. S. (2019). Sclareol-loaded lipid nanoparticles improved metabolic profile in obese mice. Life Sciences, 218, 292–299. http://doi.org/10.1016/j.lfs.2018.12.063
Durgha, H., Thirugnanasampandan, R., Ramya, G., & Ramanth, M. G. (2016). Inhibition of inducible nitric oxide synthase gene expression (iNOS) and cytotoxic activity of Salvia sclarea L. essential oil. Journal of King Saud University Science, 28(4), 390–395. http://doi.org/10.1016/j.jksus.2015.11.001
El-Shafei, S.M.A., Abd El-Rahman, A.A., Tukhbatova, R.I., Ivanova, E.V., Akinina, E.A., Voronkova, Yu.E., Bukuru, L.K., Fattakhova, A.N., Alimova, F.K. (2013). Effect of plant oils Nigella sativa and Salvia officinalis on the biochemical indices of CD-1 mice. Scientific Notes of Kazan University, 155(3), 82–89.
Ghowsi, M., Yousofvand, N., & Moradi, S. (2020). Effects of Salvia officinalis L. (common sage) leaves tea on insulin resistance, lipid profile, and oxidative stress in rats with polycystic ovary: An experimental study. Avicenna Journal of Phytomedicine, 10(3), 263–272.
Hamidpour, M., Hamidpour, R., Hamidpour, S., & Shahlari, M. (2014). Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. Journal of Traditional and Complementary Medicine, 4(2), 82–88. http://doi.org/10.4103/2225-4110.130373
Horalskiy, L.P., Khomych, V.T., & Kononsky, A.I. (2019). Histological techniques and morphological methods in normal and pathological conditions. Zhitomir, Polissia. 2019.
Huang, G.-J., Pan, C.-H., & Wu, C.-H. (2012). Sclareol Exhibits Anti-inflammatory Activity in Both Lipopolysaccharide-Stimulated Macrophages and the λ-Carrageenan-Induced Paw Edema Model. Journal of Natural Products, 75(1), 54–59. https://doi.org/10.1021/np200512a
Jakovljević, M., Jokić, S., Molnar, M., Jašić, M., Babić, J., Jukić, H., & Banjari, I. (2019). Bioactive profile of various Salvia officinalis L. preparations. Plants, 8(3), 55. http://doi.org/10.3390/plants8030055
Lieshchova, M. A., Bohomaz, A. A., & Brygadyrenko, V. V. (2021). Effect of Salvia officinalis and S. sclarea on rats with a high-fat hypercaloric diet. Regulatory Mechanisms in Biosystems, 12(3), 554–563. http://doi.org/10.15421/022176
Lieshchova, M. A., Bilan, M. V., Evert, V. V., Kravtsova, M. V., & Mylostyvyi, R. V. (2022). Morphofunctional state of the rat’s liver under the influence of Aralia elata alcohol tincture during the high-fat diet. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 24(108), 75–81. https://doi.org/10.32718/nvlvet10811
Lieshchova, M. O., Bohomaz, A. A., & Shvorak, I. S. (2022). Vplyv likarskykh roslyn rodu Salvia na biokhimichni pokaznyky krovi shchuriv na tli vysokozhyrovoho ratsionu. Suchasni problemy veterynarnoi medytsyny za khirurhichnoi ta akusherskoi patolohii: tezy dopovidei Vseukrainskoi naukovo-praktychnoi internet konferentsii, ODAU, Odesa, 2022. S. 37–39.
Loizzo, M. R., Abouali, M., Salehi, P., Sonboli, A., Kanani, M., Menichini, F., & Tundis, R. (2014). In vitro antioxidant and antiproliferative activities of nine Salvia species. Natural Product Research, 28(24), 2278–2285. http://doi.org/10.1080/14786419.2014.939086
Mahaira, L. G., Tsimplouli, C., Sakellaridis, N., Alevizopoulos, K., Demetzos, C., Han, Z., Pantazis, P., & Dimas, K. (2011). The labdane diterpene sclareol (labd-14-ene-8, 13-diol) induces apoptosis in human tumor cell lines and suppression of tumor growth in vivo via a p53-independent mechanism of action. European Journal of Pharmacology, 666(1–3), 173–182. https://doi.org/10.1016/j.ejphar.2011.04.065
Pinto Júnior, D. A. C., & Seraphim, P. M. (2012). Cafeteria diet intake for fourteen weeks can cause obesity and insulin resistance in Wistar rats. Revista de Nutrição, 25(3), 313–319. https://doi.org/10.1590/s1415-52732012000300001
Pop, A. V., Tofana, M., Socaci, S. A., Pop, C., Rotar, A. M., Nagy, M., & Salanta, L. (2016). Determination of antioxidant capacity and antimicrobial activity of selected Salvia species. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca – Food Science and Technology, 73(1), 14–18. http://doi.org/10.15835/buasvmcn-fst:11965
Saad, B., Zaid, H., Shanak, S., & Kadan, S. (2017). Anti-Diabetes and Anti-Obesity Medicinal Plants and Phytochemicals. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-54102-0