Cyclooxygenase-2 inhibitors in the treatment of cats with mammary tumors (brief review)

Authors

  • D. Bilyi Dnipro State Agrarian and Economic University
  • M. Herhaulov Dnipro State Agrarian and Economic University

DOI:

https://doi.org/10.37000/abbsl.2023.108.17

Keywords:

cats, neoplasms of the mammary gland, cyclooxygenase-2, nonsteroidal anti-inflammatory drugs

Abstract

The progressive increase in the proportion of cats with mammary gland neoplasms against the background of insufficient treatment efficiency necessitates the development and implementation of alternative treatment schemes. One of the promising directions is the influence on the pro-inflammatory link, in particular by inhibiting the synthesis of cyclooxygenase-2. Unlike humans, the issue of the feasibility of their use in cats remains debatable, which is associated with various data on the expression level of cyclooxygenase-2 in cancer patients and insufficient study of its role in the mechanisms of carcinogenesis. The evidence base for the effectiveness of NSAIDs for mammary gland cancer in cats is currently based on the results of a few clinical trials. In addition to anti-inflammatory effects, cyclooxygenase-2 inhibitors initiate apoptosis, inhibit the cell cycle and migration of cancer cells. Their maximum concentration is recorded in the affected areas, which ensures a high level of biosafety for patients. The antitumor activity of meloxicam, robenacoxib, aspirin, and piroxicam has been proven for mammary gland neoplasia in cats.

Side effects of the use of non-steroidal anti-inflammatory drugs can be manifested by disorders of the cardiovascular and excretory systems, the gastrointestinal tract, hematopoiesis. In 30% of patients, side effects during their use are short-term and do not require correction, only in 10% of cases they cause the need to interrupt therapy, which is caused by selectivity to cyclooxygenase-2.

The results of pilot studies on cats with mammary gland neoplasia demonstrate the feasibility of including cyclooxygenase-2 inhibitors in treatment protocols in order to reduce the toxic load on the body from chemotherapeutic agents.

The high level of selectivity for cyclooxygenase-2 and the moderate risk of unwanted effects allow us to consider the possibility of long-term use of nonsteroidal anti-inflammatory drugs in cats with cancer as a promising direction for further research.

References

Anderson, D. (2014). Mammary tumours in the dog and cat (part 2): surgical management. Companion Animal, 19(12), 648–653. https://doi.org/10.12968/coan.2014.19.12.648

Asghar, W., & Jamali, F. (2015). The effect of COX-2-selective meloxicam on the myocardial, vascular and renal risks: a systematic review. Inflammopharmacology, 23, 1–16. https://doi.org/10.1007/s10787-014-0225-9

Beam, S. L., Rassnick, K. M., Moore, A. S., & McDonough, S. P. (2003). An immunohistochemical study of cyclooxygenase-2 expression in various feline neoplasms. Veterinary Pathology, 40(5), 496–500. https://doi.org/10.1354/vp.40-5-496

Benavente, M. A., Bianchi, C. P., & Aba, M. A. (2016). Canine Mammary Tumors: Risk Factors, Prognosis and Treatments. J. Vet. Adv, 6(8), 1291–1300. https://doi.org/ 10.5455/jva.20160916045115

Borrego, J. F., Cartagena, J. C., & Engel, J. (2009). Treatment of feline mammary tumours using chemotherapy, surgery and a COX‐2 inhibitor drug (meloxicam): A retrospective study of 23 cases (2002–2007). Veterinary and comparative oncology, 7(4), 213–221. https://doi.org/10.1111/j.1476-5829.2009.00194.x

Brandi, A., de Faria Lainetti, P., Elias, F., Rodrigues, M. M. P., Fagundes Moraes, L., Laufer-Amorim, R., ... & Fonseca-Alves, C. E. (2022). Firocoxib as a Potential Neoadjuvant Treatment in Canine Patients with Triple-Negative Mammary Gland Tumors. Animals, 13(1), 60. https://doi.org/10.3390/ani13010060

Bulman-Fleming, J. C., Turner, T. R., & Rosenberg, M. P. (2010). Evaluation of adverse events in cats receiving long-term piroxicam therapy for various neoplasms. Journal of feline medicine and surgery, 12(4), 262–268. https://doi.org/10.1016/j.jfms.2009.09.007

Charlton, A. N., Benito, J., Simpson, W., Freire, M., & Lascelles, B. D. X. (2013). Evaluation of the clinical use of tepoxalin and meloxicam in cats. Journal of feline medicine and surgery, 15(8), 678–690. https://doi.org/10.1177/1098612X12473994

Coruzzi, G., Menozzi, A., & Dobrilla, G. (2004). Novel non-steroidal anti-inflammatory drugs: what we have learned from animal studies. Current Drug Targets-Inflammation & Allergy, 3(1), 43–61. https://doi.org/10.2174/1568010043483971

Doré, M. (2011). Cyclooxygenase-2 expression in animal cancers. Veterinary pathology, 48(1), 254–265. https://doi.org/10.1177/0300985810379434

Giraudel, J. M., Toutain, P. L., & Lees, P. (2005). Development of in vitro assays for the evaluation of cyclooxygenase inhibitors and predicting selectivity of nonsteroidal anti-inflammatory drugs in cats. American Journal of Veterinary Research, 66(4), 700–709. https://doi.org/10.2460/ajvr.2005.66.700

Goodman, L. A., Torres, B. T., Reynolds, L. R., & Budsberg, S. C. (2010). Effects of firocoxib, meloxicam, and tepoxalin administration on eicosanoid production in target tissues of healthy cats. American journal of veterinary research, 71(9), 1067–1073. https://doi.org/10.2460/ajvr.71.9.1067

Hassan, M. H., El-Beshbishy, H. A., Aly, H., Attia, S. M., Bahashwan, S. A., & Ghobara, M. M. (2014). Modulatory effects of meloxicam on cardiotoxicity and antitumor activity of doxorubicin in mice. Cancer chemotherapy and pharmacology, 74, 559–569. https://doi.org/10.1007/s00280-014-2544-3

Hayes, A. (2007). Cancer, cyclo‐oxygenase and nonsteroidal anti‐inflammatory drugs–can we combine all three?. Veterinary and comparative oncology, 5(1), 1–13. https://doi.org/10.1111/j.1476-5829.2006.00111.x

Heeb, H. L., Chun, R., Koch, D. E., Moore, L., Radlinsky, M., Corse, M., ... & Hunter, R. P. (2005). Multiple dose pharmacokinetics and acute safety of piroxicam and cimetidine in the cat. Journal of veterinary pharmacology and therapeutics, 28(5), 447–452. https://doi.org/10.1111/j.1365-2885.2005.00682.x

Heeb, H. L., Chun, R., Koch, D. E., Goatley, M. A., & Hunter, R. P. (2003). Single dose pharmacokinetics of piroxicam in cats. Journal of veterinary pharmacology and therapeutics, 26(4), 259–263. https://doi.org/10.1046/j.1365-2885.2003.00479.x

Heit, M. C., Stallons, L. J., Seewald, W., Thompson, C. M., Toutain, C. E., King, S. B., & Helbig, R. (2020). Safety evaluation of the interchangeable use of robenacoxib in commercially-available tablets and solution for injection in cats. BMC veterinary research, 16(1), 355. https://doi.org/10.1186/s12917-020-02553-7

Kamata, M., King, J. N., Seewald, W., Sakakibara, N., Yamashita, K., & Nishimura, R. (2012). Comparison of injectable robenacoxib versus meloxicam for peri-operative use in cats: results of a randomised clinical trial. Veterinary journal (London, England: 1997), 193(1), 114–118. https://doi.org/10.1016/j.tvjl.2011.11.026

Keepman, S. J., & Pellin, M. A. (2022). Low dose meloxicam is safe and tolerable when combined with toceranib phosphate in cancer-bearing cats. Journal of Feline Medicine and Surgery, 24(12), 1187–1194. https://doi.org/10.1177/1098612X211067023

King, J. N., Dawson, J., Esser, R. E., Fujimoto, R., Kimble, E. F., Maniara, W., ... & Lees, P. (2009). Preclinical pharmacology of robenacoxib: A novel selective inhibitor of cyclooxygenase‐2. Journal of veterinary pharmacology and therapeutics, 32(1), 1–17. https://doi.org/10.1111/j.1365-2885.2008.00962.x

King, J. N., Hotz, R., Reagan, E. L., Roth, D. R., Seewald, W., & Lees, P. (2012). Safety of oral robenacoxib in the cat. Journal of veterinary pharmacology and therapeutics, 35(3), 290–300. https://doi.org/10.1111/j.1365-2885.2011.01320.x

King, J. N., Panteri, A., Graille, M., Seewald, W., Friton, G., & Desevaux, C. (2016). Effect of benazepril, robenacoxib and their combination on glomerular filtration rate in cats. BMC Veterinary Research, 12, 1–15. https://doi.org/10.1186/s12917-016-0734-4

Lascelles, B. D. X., Court, M. H., Hardie, E. M., & Robertson, S. A. (2007). Nonsteroidal anti-inflammatory drugs in cats: a review. Veterinary anaesthesia and analgesia, 34(4), 228–250. https://doi.org/10.1111/j.1467-2995.2006.00322.x

Lees, P., Toutain, P. L., Elliott, J., Giraudel, J. M., Pelligand, L., & King, J. N. (2022). Pharmacology, safety, efficacy and clinical uses of the COX-2 inhibitor robenacoxib. Journal of veterinary pharmacology and therapeutics, 45(4), 325–351. https://doi.org/10.1111/jvp.13052

Li, J., Chen, X., Dong, X., Xu, Z., Jiang, H., & Sun, X. (2006). Specific COX‐2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. Journal of gastroenterology and hepatology, 21(12), 1814–1820. https://doi.org/10.1111/j.1440-1746.2006.04366.x

Millanta, F., Asproni, P., Canale, A., Citi, S., & Poli, A. (2016). COX‐2, mPGES‐1 and EP2 receptor immunohistochemical expression in canine and feline malignant mammary tumours. Veterinary and Comparative Oncology, 14(3), 270–280. https://doi.org/10.1111/vco.12096

Millanta, F., Citi, S., Della Santa, D., Porciani, M., & Poli, A. (2006). COX-2 expression in canine and feline invasive mammary carcinomas: correlation with clinicopathological features and prognostic fmolecular markers. Breast cancer research and treatment, 98, 115–120. https://doi.org/10.1007/s10549-005-9138-z

Morrison, W. B. (2012). Inflammation and cancer: a comparative view. Journal of veterinary internal medicine, 26(1), 18–31. https://doi.org/10.1111/j.1939-1676.2011.00836.x

Morré, D. J., & Morre, D. M. (2006). tNOX, an alternative target to COX-2 to explain the anticancer activities of non-steroidal anti-inflammatory drugs (NSAIDS). Molecular and cellular biochemistry, 283, 159–167. https://doi.org/10.1007/s11010-006-2568-z

Petrucci, G. N., Henriques, J., Lobo, L., Vilhena, H., Figueira, A. C., Canadas‐Sousa, A., ... & Queiroga, F. L. (2021). Adjuvant doxorubicin vs metronomic cyclophosphamide and meloxicam vs surgery alone for cats with mammary carcinomas: A retrospective study of 137 cases. Veterinary and comparative oncology, 19(4), 714–723. https://doi.org/10.1111/vco.12660

Sayasith, K., Sirois, J., & Doré, M. (2009). Molecular characterization of feline COX-2 and expression in feline mammary carcinomas. Veterinary Pathology, 46(3), 423–429. https://doi.org/10.1354/vp.08-VP-0161-D-FL

Sparkes, A. H., Heiene, R., Lascelles, B. D. X., Malik, R., Real, L., Robertson, S., ... & Taylor, P. (2010). ISFM and AAFP consensus guidelines: long-term use of NSAIDs in cats. Journal of feline medicine and surgery, 12(7), 521–538. https://doi.org/10.1016/j.jfms.2010.05.004

Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. Journal of the National Cancer Institute, 94(4), 252–266. https://doi.org/10.1093/jnci/94.4.252

Xu, E., Hu, M., & Liu, Y. (2021). Aspirin inhibits proliferation and metastasis of canine mammary gland tumor cells through Wnt signaling axis. Translational cancer research, 10(2), 589–601. https://doi.org/10.21037/tcr-20-3172

Yang, C., Liu, J., Wang, Y., Tong, J., Wu, Y., & Liu, Y. (2017). Aspirin inhibits the proliferation of canine mammary gland tumor cells in vitro and in vivo. Translational Cancer Research, 6(1). https://doi.org/10.21037/tcr.2017.01.07

Yoshitake, R., Saeki, K., Watanabe, M., Nakaoka, N., Ong, S. M., Hanafusa, M., ... & Nakagawa, T. (2017). Molecular investigation of the direct anti-tumour effects of nonsteroidal anti-inflammatory drugs in a panel of canine cancer cell lines. The Veterinary Journal, 221, 38–47. https://doi.org/10.1016/j.tvjl.2017.02.001

Published

2023-12-13

How to Cite

Білий, Д., & Гергаулов M. (2023). Cyclooxygenase-2 inhibitors in the treatment of cats with mammary tumors (brief review). Agrarian Bulletin of the Black Sea Littoral, (108). https://doi.org/10.37000/abbsl.2023.108.17