STATE OF PROOXIDANT-ANTIOXIDANT HOMEOSTASIS IN BLOOD OF REPAIR GILTS DURING THE FEEDING OF CHELATES OF MICROELEMENTS
DOI:
https://doi.org/10.37000/abbsl.2023.107.19Keywords:
repair gilts, reproductive capacity, Copper Citrate, peroxidation intensityAbstract
The period of formation of sexual function is characterized by the fluctuation of sex hormones in repair gilts, which is one of the reasons for the enhanced generation of free radicals. At the same time, the development of oxidative stress has a negative effect on the fertility of females, which is manifested in a decrease in the quality of ovums. The purpose of the experiment was to study the state of prooxidant-antioxidant homeostasis in blood of repair gilts when fed different doses of Copper Citrate. In the experiment, the repair gilts of the Large White breed, analogues in age and live weight, were used, from which three groups (15 heads in each), control and two experimental (I and II) were formed. Copper Citrate 10% and 20% above the norm was added to the main diet of gilts of the I and II experimental groups. It was determined the fact that from the 6th to the 9th month of development of gilts that consumed Copper Citrate in an amount 10% higher than the norm, the processes of peroxidation of lipids slowed down, which is evidenced by a decrease in the content of diene conjugates and TBA-active compounds with a simultaneous increase in activity superoxide dismutase. The animals of the same group had an earlier onset of the first, second, third and fourth estrus, as well as the highest percentage of fertilization (86.67%). Feeding Copper Citrate by 20% more than the norm was accompanied by a change in the state of prooxidant-antioxidant homeostasis towards the acceleration of peroxidation after the gilts reached 210 days of age: an increase in the content of diene conjugates, TBA-active compounds (p<0.01) and an increase in the activity of superoxide dismutase (p <0.01). Therefore, the feeding of Copper Citrate in the amount of 10% above the norm during the formation of reproductive capacity contributes to the normal course of oogenesis due to the optimization of pro-oxidant-antioxidant homeostasis.
References
Влізло В.В. Довідник: Фізіолого-біохімічні методи досліджень у біології, тваринництві та ветеринарній медицині. Львів, 2004. 399 с.
Кайдашев І. П. Посібник з експериментально–клінічних досліджень з біології та медицини. Полтава, 1996. С.123-128.
Рибалко В. П. Сучасні методики досліджень у свинарстві. Полтава, 2005. С.114-123.
Усенко С.О. (2019). Циклічна лабільність гомеостазу у свиней. Вісник Полтавської державної аграрної академії, 3, 125-131. doi: 10.31210/visnyk2019.03.16
Усенко, С. О., Сябро, А. С., Березницький, В. І., Чухліб, Є. В., Слинько, В. Г., & Мироненко. О. І. (2019). Новітні аспекти мінерального живлення свиней. Вісник Полтавської державної аграрної академії. 4, 126-133. doi: 10.31210/visnyk2019.04.15
Шостя, А. М., Ємець, Я. М., Кузьменко, Л. М., Мороз, О. Г., & Ступарь, І. І. (2019). Вплив гомогенату трутневих личинок на прооксидантно-антиоксидантний гомеостаз у свинок у період статевого дозрівання. Вісник Полтавської державної аграрної академії, 4, 134−140. doi: 10.31210/visnyk2019.04.16
Agarwal, A., Aponte-Mellado, A., Premkumar, B.J., Shaman, A., & Gupta, S. (2012). The effects of oxidative stress on female reproduction: a review. Reproductive Biology and Endocrinology, 10:49. doi: 10.1186/1477-7827-10-49
Behrman, H.R., Kodaman, P.H., Preston, S.L., & Gao, S. (2001) Oxidative stress and the ovary. Journal of The Society For Gynecologic Investigation, 8(1):40-2. doi: 10.1016/s1071-5576(00)00106-4
Bono, R., Squillacioti, G., Ghelli, F., Panizzolo, M., Comoretto, R.I., Dalmasso, P., & Bellisario. V. (2023) Oxidative Stress Trajectories during Lifespan: The Possible Mediation Role of Hormones in Redox Imbalance and Aging. Sustainability. 15(3):1814. doi:10.3390/su15031814
Duong, P., Tenkorang, M. A. A., Trieu, J., McCuiston C., Rybalchenko, N., & Cunningham, R. L. (2020). Neuroprotective and neurotoxic outcomes of androgens and estrogens in an oxidative stress environment. Biology of Sex Differences, 29;11(1):12. doi: 10.1186/s13293-020-0283-1
Faccin, J.E.G., Laskoski, F., Lesskiu, P.E., Paschoal, A.F.L., Mallmann, A.L., Bernardi, M.L. (2017). Reproductive performance, retention rate, and age at the third parity according to growth rate and age at first mating in the gilts with a modern genotype. Acta Scientiae Veterinariae,45, 1452. doi:10.22456/1679-9216.80034.
Holmes, S., Singh, M., Su, C., & Cunningham, R.L. (2016). Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line. Endocrinology, 157(7), 2824-2835. doi: 10.1210/en.2015-1738.
Knox, R.V. (2019). Physiology and endocrinology symposium: Factors influencing follicle development in gilts and sows and management strategies used to regulate growth for control of estrus and ovulation1. Journal of Animal Science. 3;97(4), 1433-1445. doi: 10.1093/jas/skz036.
Li, J., Yan, L., Zheng, X., Liu, G., Zhang, N., &Wang, Z. (2008). Effect of high dietary copper onweightgain and neuropeptide Y level in the hypothalamus of pigs. Journal of Trace Elements in Medicine and Biology, 22, 33–38. doi:10.1016/j.jtemb.2007.10.003
Lin, G., Guo, Y., Liu, B., Wang, R., Su, X., Yu, D., & He, P. (2020). Optimal dietary copper requirements and relative bioavailability for weanling pigs fed either copper proteinate or tribasic copper chloride. Journal of Animal Science and Biotechnology, 11, 54. doi: 10.1186/s40104-020-00457-y
Liu, B., Xiong, P., Chen, N., He, J., Lin, G., & Xue, Y. (2016). Effects of replacing of inorganic trace minerals by organically bound trace minerals on growth performance, tissue mineral status, and fecal mineral excretion in commercial grower-finisher pigs. Biological Trace Element Research,173(2), 316–324.
Liu, H., Guo, H., Jian, Z., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2020). Copper Induces Oxidative Stress and Apoptosis in the Mouse Liver. Oxidative Medicine and Cellular Longevity, 1359164. doi: 10.1155/2020/1359164.
Luddi, A., Capaldo, A., Focarelli, R., Gori, M., Morgante, G., Piomboni, P., & De Leo, V. (2016). Antioxidants reduce oxidative stress in follicular fluid of aged women undergoing IVF. Reproductive Biology and Endocrinology, 7;14(1):57. doi: 10.1186/s12958-016-0184-7.
Patterson, J., & Foxcroft, G. (2019) Gilt Management for Fertility and Longevity. Animals, 9(7):434. doi:10.3390/ani9070434
Ra, K., Park, S. C., & Lee, B.C. (2023) Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. International Journal of Molecular Sciences, 24(5):5053. doi:10.3390/ijms24055053
Sharma, R.K., & Agarwal, A. (2004). Role of reactive oxygen species in gynecologic diseases. Reproductive Medicine and Biology. 3;3(4), 177-199. doi: 10.1111/j.1447-0578.2004.00068.x.
Tenkorang, M. A., Snyder, B., & Cunningham, R. L. (2018). Sex-related differences in oxidative stress and neurodegeneration. Steroids, 133:21-27. doi: 10.1016/j.steroids.2017.12.010
Zhao, J., Allee, G., Gerlemann, G., Ma, L., Gracia, M.I., & Parker, D. (2014). Effects of a chelated copper as growth promoter on performance and carcass traits in pigs. Asian-Australasian Journal of Animal Sciences, 27(7), 965-973.