ANTIBIOTICS AND ANTIBIOTIC RESISTANT PROPERTIES OF MILK MICROORGANISMS

Authors

  • V. Danchuk National University of Life and Environmental Sciences of Ukraine
  • V. Trach STATE AGRARIAN AND ENGINEERING UNIVERSITY IN PODILIA
  • T. Prystupa STATE AGRARIAN AND ENGINEERING UNIVERSITY IN PODILIA
  • M. Klyutsuk STATE AGRARIAN AND ENGINEERING UNIVERSITY IN PODILIA
  • V. Dobrovolsky STATE AGRARIAN AND ENGINEERING UNIVERSITY IN PODILIA
  • L. Savchuk STATE AGRARIAN AND ENGINEERING UNIVERSITY IN PODILIA
  • A. Levchenko Odesa State Agrarian University
  • O. Danchuk Odesa State Agrarian University

DOI:

https://doi.org/10.37000/abbsl.2021.99.07

Keywords:

antibiotic resistance, antibiotics, milk

Abstract

The review presents scientifically substantiated data on the risks associated with the consumption and processing of milk contaminated with antibiotics and antibiotic-resistant strains of microorganisms.

References

Harding, F. (Ed.). (1995). Milk quality. New York: Blackie Academic & Professional. https://link.springer.com/book/10.1007%2F978-1-4615-2195-2

Технологія молока та молочних продуктів : навчальний посібник / Власенко В. В., Т 38 Головко М. П., Семко Т. В., Головко Т. М. – Харківський державний університет харчування та торгівлі. – Харків : ХДУХТ, 2018. – 202 с.

Mishra, P., Matuka, A., Abotaleb, M.S.A. et al. Modeling and forecasting of milk production in the SAARC countries and China. Model. Earth Syst. Environ. (2021). https://doi.org/10.1007/s40808-021-01138-z

Grelet, C., Dardenne, P., Soyeurt, H., Fernandez, J. A., Vanlierde, A., Stevens, F., ... & Dehareng, F. (2021). Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions. Methods, 186, 97-111.

Schrader SM, Vaubourgeix J, Nathan C. Biology of antimicrobial resistance and approaches to combat it. Science Translational Medicine. 2020 Jun 24;12(549).

Arkin RL (2005) FDA newsletter: CVM researchers use latest science to develop methods for detecting animal drug residues. 2014.

Thi TD, Lopez E, Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A, et al. (2011) Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J Antimicrob Chemother 66:531–538.

Pereira RVV, Siler JD, Bicalho RC, Warnick LD (2014) In Vivo Selection of Resistant E. coli after Ingestion of Milk with Added Drug Residues. PLoS ONE 9(12): e115223. https://doi.org/10.1371/journal.pone.0115223.

Rajala-Schultz, P., Nødtvedt, A., Halasa, T., & Persson Waller, K. (2021). Prudent Use of Antibiotics in Dairy Cows: The Nordic Approach to Udder Health. Frontiers in Veterinary Science, 8, 170.

Campylobacter , Salmonella spp. та Escherichia coli . Wendie L. Claeys, Sabine Cardoen, Georges Daube, Jan De Block, Koen Dewettinck, Katelijne Dierick, Lieven De Zutter, André Huyghebaert, Hein Imberechts, Pierre Thiange, Yvan Vandenplas, Lieve Herman, 'Raw or heated cow milk consumption: Review of risks and benefits', Food Control Volume 31, Issue 1, May 2013, Pages 251–262 http://dx.doi.org/10.1016/j.foodcont.2012.09.035

Teh, K. H., Flint, S., Palmer, J., Andrewes, P., Bremer, P., & Lindsay, D. (2014). Biofilm− An unrecognised source of spoilage enzymes in dairy products?. International dairy journal, 34(1), 32-40.

Banda, R., Nduko, J., & Matofari, J. (2020). Bacterial Biofilm Formation in Milking Equipments in Lilongwe, Malawi. Journal of food quality and hazards control. DOI: https://doi.org/10.18502/jfqhc.7.3.4146

M. Barbano, Y. Ma, M.V. Santos, Influence of Raw Milk Quality on Fluid Milk Shelf Life 1, 2, Journal of Dairy Science, Volume 89, Supplement, 2006, Pages E15-E19, https://doi.org/10.3168/jds.S0022-0302(06)72360-8.На.

Metz, M., Sheehan, J., & Feng, P. C. (2020). Use of indicator bacteria for monitoring sanitary quality of raw milk cheeses–A literature review. Food microbiology, 85, 103283.

World Health Organization. Antimicrobial resistance: global report on surveillance (World Health Organization, Geneva, Switzerland, 2014.

Oliveira, N. A., Gonçalves, B. L., Lee, S. H. I., Oliveira, C. A. F., & Corassin, C. H. (2020). Use of antibiotics in animal production and its impact on human health. Journal of Food Chemistry and Nanotechnology, 6(01), 40-47.

Voitsitskiy, V.V. Danchuk, V .О. Ushkalov, S.V. Midyk, O.Yu. Kepple, О .V. Danchuk, L.V. Shevchenko, Migration of antibiotics residual quantities in aquatic ecosystems V.M. (2019), Ukrainian Journal of Ecology, 9, №3, Р. 280-286.

Ushkalov V, Danchuk V, Midyk S, Voloshchuk N, Danchuk O. Mycotoxins in milk and in dairy products. Food science and technology. 2020;14(3):137-149. DOI: https://doi.org/10.15673/fst.v14i3.1786).

Godziszewska, J., Pogorzelska-Nowicka, E., Brodowska, M., Jagura-Burdzy, G., & Wierzbicka, A. (2018). Detection in raw cow's milk of coliform bacteria-reservoir of antibiotic resistance. LWT, 93, 634-640.

HANKIN, Lester, et al. Antibiotic-resistant bacteria in raw milk and ability of some to transfer antibiotic resistance to Escherichia coli. Journal of food protection, 1979, 42.12: 950-953.

von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. 2006. Antibacterial natural products in medicinal chemistry--exodus or revival? Angew Chem Int Ed Engl 45(31): 5072-5129. https://doi. org/10.1002/anie.200600350

Chiesa LM, DeCastelli L, Nobile M, Martucci F, Mosconi G, Fontana M, Castrica M, Arioli F, Panseri S. Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. LWT. 2020 Sep 1;131:109783.

Quintanilla P, Beltrán MC, Molina MP, Escriche I. Enrofloxacin treatment on dairy goats: Presence of antibiotic in milk and impact of residue on technological process and characteristics of mature cheese. Food Control. 2021 May 1;123:107762.

Câmara SP, Dapkevicius A, Silva CC, Malcata FX, LN Enes Dapkevicius M. Artisanal Pico cheese as reservoir of Enterococcus species possessing virulence and antibiotic resistance properties: Implications for food safety. Food Biotechnology. 2020 Jan 2;34(1):25-41.

Abdul‐Raouf U M, Ammar M S and Beuchat L R (1996) Isolation of Escherichia coli O157: H7 from some Egyptian foods. International Journal of Food Microbiology 29 423–426. ;

De Buyser M L, Dufour B, Maire M and Lafarge V (2001) Implication of milk and milk products in food-borne disease in France and in different industrialised countries. International Journal of Food Microbiology 67 1–17.

Coia, J. E., Johnston, Y., Steers, N. J., & Hanson, M. F. (2001). A survey of the prevalence of Escherichia coli O157 in raw meats, raw cow's milk and raw-milk cheeses in south-east Scotland. International Journal of Food Microbiology, 66(1-2), 63-69.

Ombarak, R. A., Hinenoya, A., Awasthi, S. P., Iguchi, A., Shima, A., Elbagory, A. R. M., & Yamasaki, S. (2016). Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. International Journal of Food Microbiology, 221, 69-76.

Hill B. et al. Microbiology of raw milk in New Zealand //International Journal of Food Microbiology. – 2012. – Т. 157. – №. 2. – С. 305-308.

Dušková, M., Morávková, M., Mrázek, J., Florianová, M., Vorlová, L., & Karpíšková, R. (2021). Assessment of antibiotic resistance in starter and non-starter lactobacilli of food origin. Acta Veterinaria Brno, 89(4), 401-411.

Tanya L Alderete, Chloe Autran, Benjamin E Brekke, Rob Knight, Lars Bode, Michael I Goran, David A Fields, Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life, The American Journal of Clinical Nutrition, Volume 102, Issue 6, December 2015, Pages 1381–1388, https://doi.org/10.3945/ajcn.115.115451

Urbaniak, C., Angelini, M., Gloor, G.B. et al. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4, 1 (2016). https://doi.org/10.1186/s40168-015-0145-y

Tanya L Alderete, Chloe Autran, Benjamin E Brekke, Rob Knight, Lars Bode, Michael I Goran, David A Fields, Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life, The American Journal of Clinical Nutrition, Volume 102, Issue 6, December 2015, Pages 1381–1388, https://doi.org/10.3945/ajcn.115.115451

Singh, K. S., Singh, B. P., Rokana, N., Singh, N., Kaur, J., Singh, A., & Panwar, H. (2021). Biotherapeutics from Human Milk: Prospects and Perspectives. Journal of Applied Microbiology. https://doi.org/10.1111/jam.15078

Alderete, T.L., Autran, C., Brekke, B.E., Knight, R., Bode, L., Goran, M.I. and Fields, D.A. (2015) Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. Am J Clin Nutr 102, 1381–1388. https://doi.org/10.3945/ajcn.115.115451

Martin, C.R., Ling, P.R. and Blackburn, G.L. (2016) Review of infant feeding: key features of breast milk and infant formula. Nutrients 8, 1–11. https://doi.org/10.3390/nu8050279

Sharma, C., Singh, B. P., Thakur, N., Gulati, S., Gupta, S., Mishra, S. K., & Panwar, H. (2017). Antibacterial effects of Lactobacillus isolates of curd and human milk origin against food-borne and human pathogens. 3 Biotech, 7(1), 31.

Jamyuang, C., Phoonlapdacha, P., Chongviriyaphan, N., Chanput, W., Nitisinprasert, S., & Nakphaichit, M. (2019). Characterization and probiotic properties of Lactobacilli from human breast milk. 3 Biotech, 9(11), 1-11

Sharma, C., Gulati, S., Thakur, N., Singh, B. P., Gupta, S., Kaur, S., ... & Panwar, H. (2017). Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech, 7(1), 53.

Heikkila MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95(3):471–8. 10.1046/j.1365-2672.2003.02002.x

Yadav M, Shukla P. Efficient engineered probiotics using synthetic biology approaches: a review. Biotechnology and applied biochemistry. 2020 Jan;67(1):22-9.

Otto M. Staphylococcus epidermidis—The “accidental” pathogen. Nat Rev Microbiol. 2009;7(8):555–67. 10.1038/nrmicro2182.

Moles, L., Gómez, M., Moroder, E., Bustos, G., Melgar, A., Del Campo, R., & Rodríguez, J. M. (2020). Staphylococcus epidermidis in feedings and feces of preterm neonates. Plos one, 15(2), e0227823.

Moles L, Gómez M, Heilig H, Bustos G, Fuentes S, de Vos W, et al. Bacterial Diversity in Meconium of Preterm Neonates and Evolution of Their Fecal Microbiota during the First Month of Life. PLoS One. 2013;8(6).

Honi, U., Sabrin, F., Islam, T., Islam, M., Billah, M., & Islam, K. D. (2021). Enzymatic activity and antibiotic resistance profile of Lactobacillus paracasei ssp. paracasei-1 isolated from regional yogurts of Bangladesh. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 235-239.

R.M. Kamal, M.E. Alnakip, S.F. Abd El Aal, M.A. Bayoumi Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt Int. Dairy J., 85 (2018), pp. 1-7 https://doi.org/10.1016/j.idairyj.2018.04.007

Qian, Z., Zhao, D., Yin, Y., Zhu, H., & Chen, D. (2020). Antibacterial activity of lactobacillus strains isolated from Mongolian yogurt against Gardnerella vaginalis. BioMed research international, 2020. https://doi.org/10.1155/2020/3548618

Aziz, G., Zaidi, A., Bakht, U., Parveen, N., Ahmed, I., Haider, Z., & Muhammad, T. (2020). Microbial safety and probiotic potential of packaged yogurt products in Pakistan. Journal of Food Safety, 40(1), e12741.

AARESTRUP, Frank M. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370.1670: 20140085.

Tóth, A.G., Csabai, I., Krikó, E. et al. Antimicrobial resistance genes in raw milk for human consumption. Sci Rep 10, 7464 (2020). https://doi.org/10.1038/s41598-020-63675-4

Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States (U.S. Department of Health and Human Services, CDC, Atlanta, GA, USA, 2019.

Tóth, A.G., Csabai, I., Krikó, E. et al. Antimicrobial resistance genes in raw milk for human consumption. Sci Rep 10, 7464 (2020). https://doi.org/10.1038/s41598-020-63675-4.

García-Galán, A., Nouvel, L. X., Baranowski, E., Gómez-Martín, Á., Sánchez, A., Citti, C., & de la Fe, C. (2020). Mycoplasma bovis in Spanish cattle herds: Two groups of multiresistant isolates predominate, with one remaining susceptible to fluoroquinolones. Pathogens, 9(7), 545.

V. Saini, J.T. McClure, D. Léger, S. Dufour, A.G. Sheldon, D.T. Scholl, H.W. Barkema, Antimicrobial use on Canadian dairy farms, Journal of Dairy Science, Volume 95, Issue 3, 2012, Pages 1209-1221, ISSN 0022-0302, https://doi.org/10.3168/jds.2011-4527. http://www.sciencedirect.com/science/article/pii/S002203021200080X

P.N. Tempini, S.S. Aly, B.M. Karle, R.V. Pereira, Multidrug residues and antimicrobial resistance patterns in waste milk from dairy farms in Central California, Journal of Dairy Science, Volume 101, Issue 9, 2018, Pages 8110-8122, ISSN 0022-0302, https://doi.org/10.3168/jds.2018-14398. http://www.sciencedirect.com/science/article/pii/S0022030218306246 )).

Otto, M. (2009). Staphylococcus epidermidis—the'accidental'pathogen. Nature reviews microbiology, 7(8), 555-567.

Qin, L., Da, F., Fisher, E. L., Tan, D. C., Nguyen, T. H., Fu, C. L., ... & Otto, M. (2017). Toxin mediates sepsis caused by methicillin-resistant Staphylococcus epidermidis. PLoS Pathogens, 13(2), e1006153.

Abbondio, M., Fois, I., Longheu, C., Azara, E., & Tola, S. (2019). Biofilm production, quorum sensing system and analysis of virulence factors of Staphylococcus epidermidis collected from sheep milk samples. Small Ruminant Research, 174, 83-87.

Wu, J. A., Kusuma, C., Mond, J. J., & Kokai-Kun, J. F. (2003). Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrobial agents and chemotherapy, 47(11), 3407-3414.

Tran P, Prindle A. Synthetic biology in biofilms: Tools, challenges, and opportunities. Biotechnology Progress.:e3123. Weber M, Liedtke J, Plattes S, Lipski A (2019) Bacterial community composition of biofilms in milking machines of two dairy farms assessed by a combination of culture-dependent and –independent methods. PLoS ONE 14(9): e0222238. https://doi.org/10.1371/journal.pone.0222238).

Namvar, A. E., Bastarahang, S., Abbasi, N., Ghehi, G. S., Farhadbakhtiarian, S., Arezi, P., ... & Chermahin, S. G. (2014). Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS hygiene and infection control, 9(3).

Otto, M. (2009). Staphylococcus epidermidis—the'accidental'pathogen. Nature reviews microbiology, 7(8), 555-567.

Gomes, F., Teixeira, P., & Oliveira, R. (2014). Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: old and new fighting strategies. Biofouling, 30(2), 131-141.

Turchi, B., Bertelloni, F., Marzoli, F., Cerri, D., Tola, S., Azara, E., ... & Fratini, F. (2020). Coagulase negative staphylococci from ovine milk: Genotypic and phenotypic characterization of susceptibility to antibiotics, disinfectants and biofilm production. Small Ruminant Research, 183, 106030.

Cheema, A. S., Stinson, L. F., Lai, C. T., Geddes, D. T., & Payne, M. S. (2021). DNA extraction method influences human milk bacterial profiles. Journal of Applied Microbiology, 130(1), 142-156.

Fisher, E. A., & Paterson, G. K. (2020). Prevalence and characterisation of methicillin-resistant staphylococci from bovine bulk tank milk in England and Wales. Journal of global antimicrobial resistance, 22, 139-144.

Dong Y, Speer CP. The role of Staphylococcus epidermidis in neonatal sepsis: Guarding angel or pathogenic devil? Int J Med Microbiol. 2014;304(5–6):513–20. 10.1016/j.ijmm.2014.04.013

Baylis, C. L. (2009). Raw milk and raw milk cheeses as vehicles for infection by Verocytotoxin‐producing Escherichia coli. International Journal of Dairy Technology, 62(3), 293-307.

Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P. EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic acids research. 2010 Nov 20;39(suppl_1):D583-90.

Menge C. Molecular biology of Escherichia coli Shiga toxins’ effects on mammalian cells. Toxins. 2020 May;12(5):345.

Baylis, C. L. (2009). Raw milk and raw milk cheeses as vehicles for infection by Verocytotoxin‐producing Escherichia coli. International Journal of Dairy Technology, 62(3), 293-307.

Ombarak, R. A., Hinenoya, A., Awasthi, S. P., Iguchi, A., Shima, A., Elbagory, A. R. M., & Yamasaki, S. (2016). Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. International Journal of Food Microbiology, 221, 69-76.

Coia, J. E., Johnston, Y., Steers, N. J., & Hanson, M. F. (2001). A survey of the prevalence of Escherichia coli O157 in raw meats, raw cow's milk and raw-milk cheeses in south-east Scotland. International Journal of Food Microbiology, 66(1-2), 63-69.

Dhaka P, Vijay D, Vergis J, Negi M, Kumar M, Mohan V, Doijad S, Poharkar KV, Malik SS, Barbuddhe SB. Genetic diversity and antibiogram profile of diarrhoeagenic Escherichia coli pathotypes isolated from human, animal, foods and associated environmental sources. Infection Ecol & Epidemiol. 2016;6:31055.

Dhaka P, Vijay D, Vergis J, Negi M, Kumar M, Mohan V, Doijad S, Poharkar KV, Malik SS, Barbuddhe SB. Genetic diversity and antibiogram profile of diarrhoeagenic Escherichia coli pathotypes isolated from human, animal, foods and associated environmental sources. Infection Ecol & Epidemiol. 2016;6:31055.

Wang J, Stanford K, McAllister TA, Johnson RP, Chen J, Hou H, Zhang G, Niu YD. Biofilm formation, virulence gene profiles, and antimicrobial resistance of nine serogroups of non-O157 Shiga toxin–producing Escherichia coli. Foodborne Pathog Dis. 2016;13:316–24.

Farshad S, Ranijbar R, Japoni A, Hosseini M, Anvarinejad M, Mohammadzadegan R. Microbial susceptibility, virulence factors, and plasmid profiles of uropathogenic Escherichia coli strains isolated from children in Jahrom, Iran. Archives of Iranian Medicine (AIM). 2012;15:312-6.

Momtaz H, Farzan R, Rahimi E, Safarpoor Dehkordi F, Souod N. Molecular characterization of Shiga toxin-producing Escherichia coli isolated from ruminant and donkey raw milk samples and traditional dairy products in Iran. Sci World J. 2012;2012:1-13

Momtaz H, Dehkordi FS, Rahimi E, Ezadi H, Arab R. Incidence of Shiga toxin-producing Escherichia coli serogroups in ruminant's meat. Meat Sci. 2013;95:381–8.

Amézquita-López BA, Quiñones B, Soto-Beltrán M, Lee BG, Yambao JC, Lugo-Melchor OY, Chaidez C. Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and non-O157 recovered from domestic farm animals in rural communities in northwestern Mexico. Antimicrob Resist Infect Control. 2016;5:1

Momtaz H, Farzan R, Rahimi E, Safarpoor Dehkordi F, Souod N. Molecular characterization of Shiga toxin-producing Escherichia coli isolated from ruminant and donkey raw milk samples and traditional dairy products in Iran. Sci World J. 2012;2012:1-13.

Momtaz H, Dehkordi FS, Rahimi E, Ezadi H, Arab R. Incidence of Shiga toxin-producing Escherichia coli serogroups in ruminant's meat. Meat Sci. 2013;95:381–8

Dehkordi FS, Yazdani F, Mozafari J, Valizadeh Y. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products. BMC

Momtaz H, Farzan R, Rahimi E, Safarpoor Dehkordi F, Souod N. Molecular characterization of Shiga toxin-producing Escherichia coli isolated from ruminant and donkey raw milk samples and traditional dairy products in Iran. Sci World J. 2012;2012:1-13

Momtaz H, Safarpoor Dehkordi F, Rahimi E, Ezadi H, Arab R. Incidence of Shiga toxin-producing Escherichia coli serogroups in ruminant's meat. Meat Sci. 2013 Oct;95(2):381-8. doi: 10.1016/j.metsci.2013.04.051. Epub 2013 May 1. PMID: 23747633.

Dehkordi FS, Yazdani F, Mozafari J, Valizadeh Y. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products. BMC research notes. 2014;7:217

Martínez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887), 365-367.]. Starikova, E. V., Prianichnikov, N. A., Zdobnov, E., Govorun, V. M. (2017). Bioinformatics analysis of antimicrobial resistance genes and prophages colocalized in human gut metagenomes. Biomeditsinskaya khimiya, 63(6), 508-512.].

Terence S. Crofts, Pratyush Sontha, Amber O. King, Bin Wang, Brent A. Biddy, Nicole Zanolli, John Gaumnitz, Gautam Dantas, Discovery and Characterization of a Nitroreductase Capable of Conferring Bacterial Resistance to Chloramphenicol, Cell Chemical Biology, Volume 26, Issue 4, 2019, Pages 559-570.e6, ISSN 2451-9456, https://doi.org/10.1016/j.chembiol.2019.01.007.

Kevin J. Forsberg, Sanket Patel, Timothy A. Wencewicz, Gautam Dantas, The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes, Chemistry & Biology, Volume 22, Issue 7, 2015, Pages 888-897, ISSN 1074-5521, https://doi.org/10.1016/j.chembiol.2015.05.017.

Chukwudi CU. 2016. rRNA binding sites and the molecular mechanism of action of the tetracyclines. Antimicrob Agents Chemother 60:4433–4441. doi:10.1128/AAC.00594-16

Functionalized Single-Walled Carbon Nanotubes and Nanographene Oxide to Overcome Antibiotic Resistance in Tetracycline-Resistant Escherichia coli Jordan A. Carver, Audrey L. Simpson, Ria P. Rathi… and Mark D. Ellison ACS Applied Nano Materials 2020 3 (4), 3910-3921 DOI: 10.1021/acsanm.0c00677.

Roemhild R, Linkevicius M, Andersson DI (2020) Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol 18(1): e3000612. https://doi.org/10.1371/journal.pbio.3000612

Shakti L, Veeraraghavan B. Advantage and limitations of nitrofurantoin in multi-drug resistant Indian scenario. Indian Journal of Medical Microbiology. 2015 Oct 1;33(4):477.

Osei Sekyere J. Genomic insights into nitrofurantoin resistance mechanisms and epidemiology in clinical Enterobacteriaceae //Future science OA. – 2018. – Т. 4. – №. 5. – С. FSO293.

Sorlozano-Puerto, A., Lopez-Machado, I., Albertuz-Crespo, M., Martinez-Gonzalez, L. J., & Gutierrez-Fernandez, J. (2020). Characterization of fosfomycin and nitrofurantoin resistance mechanisms in Escherichia coli isolated in clinical urine samples. Antibiotics, 9(9), 534.

Яковлєва, Л. В., Яковлева, Л. В., Бердник, О. Г., & Кривозуб, І. О. (2018). Аналіз українського фармацевтичного ринку антибіотиків групи фторхінолонів http://91.234.42.22/bitstream/123456789/18172/1/197-199.pdf

Colclough, A. L., Alav, I., Whittle, E. E., Pugh, H. L., Darby, E. M., Legood, S. W., ... & Blair, J. M. (2020). RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiology, 15(2), 143-157. https://doi.org/10.2217/fmb-2019-0235

Assar, S., Nosratabadi, R., Masoumi, J., Mohamadi, M., & Hassanshahi, G. (2020). A Review of Immunomodulatory Effects of Fluoroquinolones. Immunological Investigations, 1-20 https://doi.org/10.1080/08820139.2020.1797778

Ahmed Nasri, Mohamed Allouche, Amel Hannachi, Taha Barkaoui, Badreddine Barhoumi, Ibtihel Saidi, Fabio D'Agostino, Ezzeddine Mahmoudi, Hamouda Beyrem, Fehmi Boufahja, Nematodes trophic groups changing via reducing of bacterial population density after sediment enrichment to ciprofloxacin antibiotic: Case study of Marine Mediterranean community, Aquatic Toxicology, Volume 228, 2020, С. 105632, ISSN 0166-445X, https://doi.org/10.1016/j.aquatox.2020.105632.

Jean-Paul R Soucy, Alexandra M Schmidt, Caroline Quach, David L Buckeridge, Fluoroquinolone Use and Seasonal Patterns of Ciprofloxacin Resistance in Community-Acquired Urinary Escherichia coli Infection in a Large Urban Center, American Journal of Epidemiology, Volume 189, Issue 3, March 2020, Pages 215–223, https://doi.org/10.1093/aje/kwz239

Zelmat, Y., Rousseau, V., Chebane, L. et al. Fluoroquinolone-Induced Photosensitivity: A Chemical Fragment-Based Approach by a Case/Non-case Study in VigiBase®. Drug Saf 43, 561–566 (2020). https://doi.org/10.1007/s40264-020-00917-4

Jia, Y., Khanal, S. K., Shu, H., Zhang, H., Chen, G. H., & Lu, H. (2018). Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathways. Water research, 136, 64-74.

Kelly C. Wade, Daniel K. Benjamin, CHAPTER 37 - Clinical Pharmacology of Anti-Infective Drugs, Editor(s): Jack S. Remington, Jerome O. Klein, Christopher B. Wilson, Victor Nizet, Yvonne A. Maldonado, Infectious Diseases of the Fetus and Newborn (Seventh Edition), W.B. Saunders, 2011, Pages 1160-1211, ISBN 9781416064008, https://doi.org/10.1016/B978-1-4160-6400-8.00037-7

HENDRIKSEN, Rene S., et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature communications, 2019, 10.1: 1-12.

Choi, J., Marks, J., Zhang, J. et al. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Nat Chem Biol 16, 310–317 (2020). https://doi.org/10.1038/s41589-019-0423-2

Mechanisms of metabolic performance enhancement during electrically assisted anaerobic treatment of chloramphenicol wastewater Author: Ning Guo,Xiaofang Ma,Shaojie Ren,Shuguang Wang,Yunkun Wang Publication: Water Research Publisher: Elsevier Date: 1 June 2019 https://doi.org/10.1016/j.watres.2019.03.032

Keyes K, Hudson C, Maurer JJ, Thayer S, White DG, Lee MD. Detection of florfenicol resistance genes in Escherichia coli isolated from sick chickens. Antimicrob Agents Chemother. 2000 Feb;44(2):421-4. doi: 10.1128/aac.44.2.421-424.2000. PMID: 10639375; PMCID: PMC89696.

Cannon M, Harford S, Davies J. A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives. J Antimicrob Chemother. 1990 Sep;26(3):307-17. doi: 10.1093/jac/26.3.307. PMID: 2228823.

White, D. G., Hudson, C., Maurer, J. J., Ayers, S., Zhao, S., Lee, M. D., & SHERWOOD, J. (2018). Chloramphenicol and Florfenicol Resistance in Escherichia Coli of Characterization. Sci J of Ani and Vet Sci, 1(1), 001-006.

Published

2021-05-28

How to Cite

Данчук, В., Трач, В., Приступа, Т., Клюцук, М., Добровольський, В., Савчук, Л., Левченко, А., & Данчук, О. (2021). ANTIBIOTICS AND ANTIBIOTIC RESISTANT PROPERTIES OF MILK MICROORGANISMS. Agrarian Bulletin of the Black Sea Littoral, (99). https://doi.org/10.37000/abbsl.2021.99.07